目录
- 1.题目
- 2.步骤
- 3.模型选择
- 4.环境配置
- 5.csv数据处理
- 6.数据处理
- 7.模型训练
-
这篇介绍的是我在做房价预测模型时的python代码,房价预测在机器学习入门中已经是个经典的题目了,但我发现目前网上还没有能够很好地做一个demo出来,使得入门者不能很快的找到“入口”在哪,所以在此介绍我是如何做的预测房价模型的题目,仅供参考。
1.题目:
从给定的房屋基本信息以及房屋销售信息等,建立一个回归模型预测房屋的销售价格。<br />
数据下载请点击:下载,密码:mfqy。
数据说明:
数据主要包括2014年5月至2015年5月美国King County的房屋销售价格以及房屋的基本信息。
数据分为训练数据和测试数据,分别保存在kc_train.csv和kc_test.csv两个文件中。
其中训练数据主要包括10000条记录,14个字段,主要字段说明如下:
第一列“销售日期”:2014年5月到2015年5月房屋出售时的日期
第二列“销售价格”:房屋交易价格,单位为美元,是目标预测值
第三列“卧室数”:房屋中的卧室数目
第四列“浴室数”:房屋中的浴室数目
第五列“房屋面积”:房屋里的生活面积
第六列“停车面积”:停车坪的面积
第七列“楼层数”:房屋的楼层数
第八列“房屋评分”:King County房屋评分系统对房屋的总体评分
第九列“建筑面积”:除了地下室之外的房屋建筑面积
第十列“地下室面积”:地下室的面积
第十一列“建筑年份”:房屋建成的年份
第十二列“修复年份”:房屋上次修复的年份
第十三列”纬度”:房屋所在纬度
第十四列“经度”:房屋所在经度测试数据主要包括3000条记录,13个字段,跟训练数据的不同是测试数据并不包括房屋销售价格,学员需要通过由训练数据所建立的模型以及所给的测试数据,得出测试数据相应的房屋销售价格预测值。
2.步骤
1.选择合适的模型,对模型的好坏进行评估和选择。
- 2.对缺失的值进行补齐操作,可以使用均值的方式补齐数据,使得准确度更高。
- 3.数据的取值一般跟属性有关系,但世界万物的属性是很多的,有些值小,但不代表不重要,所有为了提高预测的准确度,统一数据维度进行计算,方法有特征缩放和归一法等。
- 4.数据处理好之后就可以进行调用模型库进行训练了。
5.使用测试数据进行目标函数预测输出,观察结果是否符合预期。或者通过画出对比函数进行结果线条对比。
3.模型选择
这里我们选择多元线性回归模型。公式如下:选择多元线性回归模型。
y表示我们要求的销售价格,x表示特征值。需要调用sklearn库来进行训练。4.环境配置
python3.5
- numpy库
- pandas库
- matplotlib库进行画图
- seaborn库
- sklearn库
5.csv数据处理
下载的是两个数据文件,一个是真实数据,一个是测试数据,打开kc_train.csv,能够看到第二列是销售价格,而我们要预测的就是销售价格,所以在训练过程中是不需要销售价格的,把第二列删除掉,新建一个csv文件存放销售价格这一列,作为后面的结果对比。6.数据处理
首先先读取数据,查看数据是否存在缺失值,然后进行特征缩放统一数据维度。代码如下:(注:最后会给出完整代码) ```读取数据
housing = pd.read_csv(‘kc_train.csv’) target=pd.read_csv(‘kc_train2.csv’) #销售价格 t=pd.read_csv(‘kc_test.csv’) #测试数据
数据预处理
housing.info() #查看是否有缺失值
特征缩放
from sklearn.preprocessing import MinMaxScaler minmax_scaler=MinMaxScaler() minmax_scaler.fit(housing) #进行内部拟合,内部参数会发生变化 scaler_housing=minmax_scaler.transform(housing) scaler_housing=pd.DataFrame(scaler_housing,columns=housing.columns)
## 7.模型训练
使用sklearn库的线性回归函数进行调用训练。梯度下降法获得误差最小值。最后使用均方误差法来评价模型的好坏程度,并画图进行比较。
选择基于梯度下降的线性回归模型
from sklearn.linear_model import LinearRegression LR_reg=LinearRegression()
进行拟合
LR_reg.fit(scaler_housing,target)
使用均方误差用于评价模型好坏
from sklearn.metrics import mean_squared_error preds=LR_reg.predict(scaler_housing) #输入数据进行预测得到结果 mse=mean_squared_error(preds,target) #使用均方误差来评价模型好坏,可以输出mse进行查看评价值
绘图进行比较
plot.figure(figsize=(10,7)) #画布大小 num=100 x=np.arange(1,num+1) #取100个点进行比较 plot.plot(x,target[:num],label=’target’) #目标取值 plot.plot(x,preds[:num],label=’preds’) #预测取值 plot.legend(loc=’upper right’) #线条显示位置 plot.show()
```
最后输出的图是这样的:
从这张结果对比图中就可以看出模型是否得到精确的目标函数,是否能够精确预测房价。
- 如果想要预测test文件里的数据,那就把test文件里的数据进行读取,并且进行特征缩放,调用:
LR_reg.predict(test)
就可以得到预测结果,并进行输出操作。 - 到这里可以看到机器学习也不是不能够学会,只要深入研究和总结,就能够找到学习的方法,重要的是总结,最后就是调用一些机器学习的方法库就行了,当然这只是入门级的,我觉得入门级的写到这已经足够了,很多人都能够看得懂,代码量不多。但要理解线性回归的概念性东西还是要多看资料。
8.完整代码
作者:@mantchs