- 1. Awesome Transfer Learning Papers
- 1.1. General Transfer Learning (普通迁移学习)
- 1.2. Domain Adaptation (领域自适应)
- 1.3. Domain Generalization
- 1.4. Multi-source Transfer Learning (多源迁移学习)
- 1.5. Heterogeneous Transfer Learning (异构迁移学习)
- 1.6. Online Transfer Learning (在线迁移学习)
- 1.7. Zero-shot / Few-shot Learning
- 1.8. Deep Transfer Learning (深度迁移学习)
- 1.9. Multi-task Learning (多任务学习)
- 1.10. Transfer Reinforcement Learning (强化迁移学习)
- 1.11. Transfer Metric Learning (迁移度量学习)
- 1.12. Transitive Transfer Learning (传递迁移学习)
- 1.13. Lifelong Learning (终身迁移学习)
- 1.14. Negative Transfer (负迁移)
- 1.15. Transfer Learning Applications (应用)
1. Awesome Transfer Learning Papers
Let’s read some awesome transfer learning / domain adaptation papers.
这里收录了迁移学习各个研究领域的最新文章。
- 1. Awesome Transfer Learning Papers
- 1.1. General Transfer Learning (普通迁移学习)
- 1.1.1. Theory (理论)
- 1.1.2. Others (其他)
- 1.2. Domain Adaptation (领域自适应)
- 1.2.1. Traditional Methods (传统迁移方法)
- 1.2.2. Deep / Adversarial Methods (深度/对抗迁移方法)
- 1.3. Domain Generalization
- 1.4. Multi-source Transfer Learning (多源迁移学习)
- 1.5. Heterogeneous Transfer Learning (异构迁移学习)
- 1.6. Online Transfer Learning (在线迁移学习)
- 1.7. Zero-shot / Few-shot Learning
- 1.7.1. Zero-shot Learning based on Data Synthesis (基于样本生成的零样本学习)
- 1.8. Deep Transfer Learning (深度迁移学习)
- 1.8.1. Non-Adversarial Transfer Learning (非对抗深度迁移)
- 1.8.2. Deep Adversarial Transfer Learning (对抗迁移学习)
- 1.9. Multi-task Learning (多任务学习)
- 1.10. Transfer Reinforcement Learning (强化迁移学习)
- 1.11. Transfer Metric Learning (迁移度量学习)
- 1.12. Transitive Transfer Learning (传递迁移学习)
- 1.13. Lifelong Learning (终身迁移学习)
- 1.14. Negative Transfer (负迁移)
- 1.15. Transfer Learning Applications (应用)
1.1. General Transfer Learning (普通迁移学习)
1.1.1. Theory (理论)
20200220 Butterfly: One-step Approach towards Wildly Unsupervised Domain Adaptation
Noisy domain adaptation
- 用于噪声环境中的domain adaptation的方法
20210127 A Unified Joint Maximum Mean Discrepancy for Domain Adaptation
一个理论上更一般化的MMD差异用于领域自适应
- A more general MMD for domain adaptation
20200813 A Boundary Based Out-of-Distribution Classifier for Generalized Zero-Shot Learning
OOD classifier for generalized zero-shot learning
20200813 ICML-20 On Learning Language-Invariant Representations for Universal Machine Translation
Theory for universal machine translation
- 对统一机器翻译模型进行了理论论证
20200702 ICML-20 Few-shot domain adaptation by causal mechanism transfer
The first work on causal transfer learning
- 日本理论组大佬Sugiyama的工作,causal transfer learning
20191008 CVPR-19 Characterizing and Avoiding Negative Transfer
Characterizing and avoid negative transfer
- 形式化并提出如何避免负迁移
20190301 ALT-19 A Generalized Neyman-Pearson Criterion for Optimal Domain Adaptation
A new criterion for domain adaptation
- 提出一种新的可以强化domain adaptation表现的度量
20181219 arXiv PAC Learning Guarantees Under Covariate Shift
PAC learning theory for covariate shift
- Covariate shift问题的PAC学习理论
20181206 arXiv Transferring Knowledge across Learning Processes
Transfer learning across learning processes
- 学习过程中的知识迁移
20181128 arXiv Theoretical Guarantees of Transfer Learning
Some theoretical analysis of transfer learning
- 一些关于迁移学习的理论分析
20181117 arXiv Theoretical Perspective of Deep Domain Adaptation
Providing some theory analysis on deep domain adaptation
- 对deep domain adaptaiton做出了一些理论上的分析
20181106 workshop GENERALIZATION BOUNDS FOR DOMAIN ADAPTATION VIA DOMAIN TRANSFORMATIONS
Analyze some generalization bound for domain adaptation
- 对domain adaptation进行了一些理论上的分析
1.1.2. Others (其他)
20210426 Distill on the Go: Online knowledge distillation in self-supervised learning
Online knowledge distillation in self-supervised learning
- 自监督学习中的在线知识蒸馏
20210319 Cross-domain Activity Recognition via Substructural Optimal Transport | 知乎文章 | 微信公众号
Using sub-structures for domain adaptation
- 采用子结构进行domain adaptation,比传统方法快5倍
20210202 ICLR-21 Rethinking Soft Labels for Knowledge Distillation: A Bias-Variance Tradeoff Perspective
Rethink soft labels for KD in a bias-variance tradeoff perspective
- 从偏差-方差的角度重新思考蒸馏中的软标签
20210106 Style Normalization and Restitution for DomainGeneralization and Adaptation
Style normalization and restitution for DA and DG
- 风格归一化用于DA和DG任务
20210104 A Closer Look at Few-Shot Crosslingual Transfer: Variance, Benchmarks and Baselines
A closer look at few-shot crosslingual transfer
20201222 AAAI-21 DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation
OOD generalization
- 用特征分解和语义增强做OOD泛化
20201208 TIP Effective Label Propagation for Discriminative Semi-Supervised Domain Adaptation
用label propagation做半监督domain adaptation
用transformer做low-level的图像任务
20201203 Unpaired Image-to-Image Translation via Latent Energy Transport
用能量模型做图像翻译
Deep ensemble models for transfer learning
Energy-based OOD
20200927 Privacy-preserving Transfer Learning via Secure Maximum Mean Discrepancy
加密情况下的MMD用于迁移学习
20200914 A First Step Towards Distribution Invariant Regression Metrics
分布无关的回归评价
20200821 ECCV-20 Towards Recognizing Unseen Categories in Unseen Domains
Recognizing unseen classes in unseen domains
- 对未知领域识别未知类
跨领域自监督学习
20200813 ECCV-20 Learning to Cluster under Domain Shift
Learning to cluster under domain shift
- 在domain shift的情况下进行聚类
- 20200706 [ICML-20] Continuously Indexed Domain Adaptation
- 20200706 Interactive Knowledge Distillation
- 20200629 [ICML-20] Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
- Source-free adaptation
- 在adaptation过程中不访问source data
Using L1 regularizationg for transfer learning
20200629 [ICML-20] [Graph Optimal Transport for Cross-Domain Alignment])(https://arxiv.org/abs/2006.14744)
Graph OT for cross-domain alignment
- 20200615 Double Double Descent: On Generalization Errors in Transfer Learning between Linear Regression Tasks
20200412 ICML-19 Towards understanding knowledge distillation
Some theoretical and empirical understanding to knowledge distllation
- 对知识蒸馏的一些理论和实验的分析
20200210 WACVW-20 Impact of ImageNet Model Selection on Domain Adaptation
A good experiment paper to indicate the power of representations
- 一篇很好的实验paper,揭示了深度特征+传统方法的有效性
20191202 AAAI-20 Towards Oracle Knowledge Distillation with Neural Architecture Search
Using NAS for knowledge Distillation
- 用NAS帮助知识蒸馏
20191202 AAAI-20 Stable Learning via Sample Reweighting
Theoretical sample reweigting
- 理论和方法,用于sample reweight
20191202 arXiv Domain-invariant Stereo Matching Networks
Domain-invariant stereo matching networks
- 领域不变的匹配网络
20191202 arXiv Learning Generalizable Representations via Diverse Supervision
Diverse supervision helps to learn generalizable representations
20191202 arXiv Domain-Aware Dynamic Networks
Edge devices adaptative computing
- 边缘计算上的自适应计算
20191029 Adversarial Feature Alignment: Avoid Catastrophic Forgetting in Incremental Task Lifelong Learning
Avoid catastrophic forgeeting in incremental task lifelong learning
- 在终身学习中避免灾难遗忘
Use style-agnostic networks to avoid domain gap
- 通过风格无关的网络来避免领域的gap
20191015 arXiv The Visual Task Adaptation Benchmark
A new large benchmark for visual adaptation tasks by Google
- Google提出的一个巨大的视觉迁移任务数据集
20191011 arXiv Estimating Transfer Entropy via Copula Entropy
Evaluate the transfer entopy via copula entropy
- 评估迁移熵
20191011 arXiv Learning to Remember from a Multi-Task Teacher
Dealing with the catastrophic forgetting during sequential learning
- 在序列学习时处理灾难遗忘
20191008 arXiv DIVA: Domain Invariant Variational Autoencoders
Domain invariant variational autoencoders
- 领域不变的变分自编码器
20190821 arXiv Transfer Learning-Based Label Proportions Method with Data of Uncertainty
Transfer learning with source and target having uncertainty
- 当source和target都有不确定label时进行迁移
20190806 KDD-19 Relation Extraction via Domain-aware Transfer Learning
Relation extraction using transfer learning for knowledge base construction
- 利用迁移学习进行关系抽取
20190703 arXiv Inferred successor maps for better transfer learning
Inferred successor maps for better transfer learning
20190626 arXiv Transfer of Machine Learning Fairness across Domains
Transfer of machine learning fairness across domains
- 机器学习的公平性的迁移
20190531 IJCAI-19 Adversarial Imitation Learning from Incomplete Demonstrations
Adversarial imitation learning from imcomplete demonstrations
- 基于不完整实例的对抗模仿学习
20190517 arXiv Budget-Aware Adapters for Multi-Domain Learning
Budget-Aware Adapters for Multi-Domain Learning
20190409 arXiv Improving Image Classification Robustness through Selective CNN-Filters Fine-Tuning
Improving Image Classification Robustness through Selective CNN-Filters Fine-Tuning
- 通过可选择的CNN滤波器进行图像分类的fine-tuning
20190401 arXiv Distilling Task-Specific Knowledge from BERT into Simple Neural Networks
Distill knowledge from BERT to simple neural networks
- 从BERT模型中迁移知识到简单网络中
20190305 arXiv Let’s Transfer Transformations of Shared Semantic Representations
Transfer transformations from shared semantic representations
- 从共享的语义表示中进行特征迁移
20190301 SysML-19 FixyNN: Efficient Hardware for Mobile Computer Vision via Transfer Learning
An efficient hardware for mobile computer vision applications using transfer learning
- 提出一个高效的用于移动计算机视觉应用的硬件
20190118 arXiv Domain Adaptation for Structured Output via Discriminative Patch Representations
Domain adaptation for structured output
- Domain adaptation用于结构化输出
20190111 arXiv Low-Cost Transfer Learning of Face Tasks
Infer what task transfers better and how to transfer
- 探索对于一个预训练好的网络来说哪个任务适合迁移、如何迁移
20190111 arXiv Transfer Representation Learning with TSK Fuzzy System
Transfer learning with fuzzy system
- 基于模糊系统的迁移学习
20190102 arXiv An introduction to domain adaptation and transfer learning
Another introduction to transfer learning
- 另一个迁移学习和domain adaptation综述
20181217 arXiv When Semi-Supervised Learning Meets Transfer Learning: Training Strategies, Models and Datasets
Combining semi-supervised learning and transfer learning
- 将半监督方法应用于迁移学习
20181127 arXiv Privacy-preserving Transfer Learning for Knowledge Sharing
First work on privacy preserving in transfer learning
- 第一篇探讨迁移学习中隐私保护的文章(第四范式、杨强)
20181121 arXiv An Efficient Transfer Learning Technique by Using Final Fully-Connected Layer Output Features of Deep Networks
Using final fc layer to perform transfer learning
- 使用最后一层全连接层进行迁移学习
20181121 arXiv Not just a matter of semantics: the relationship between visual similarity and semantic similarity
Interpreting relationships between visual similarity and semantic similarity
- 解释了视觉相似性和语义相似性的不同
20181008 arXiv Unsupervised Learning via Meta-Learning
Meta-learning for unsupervised learning
- 用于无监督学习的元学习
20101008 arXiv Concept-drifting Data Streams are Time Series; The Case for Continuous Adaptation
Continuous adaptation for time series data
- 对时间序列进行连续adaptation
20180925 arXiv DT-LET: Deep Transfer Learning by Exploring where to Transfer
Explore the suitable layers to transfer
- 探索深度网络中效果表现好的对应的迁移层
20180919 JMLR Invariant Models for Causal Transfer Learning
Invariant models for causal transfer learning
- 针对causal transfer learning提出不变模型
20180912 arXiv Transfer Learning with Neural AutoML
Applying transfer learning into autoML search
- 将迁移学习思想应用于automl
20190904 arXiv On the Minimal Supervision for Training Any Binary Classifier from Only Unlabeled Data
Train binary classifiers from only unlabeled data
- 仅从无标记数据训练二分类器
20180904 arXiv Learning Data-adaptive Nonparametric Kernels
Learn a kernel that can do adaptation
- 学习一个可以自适应的kernel
20180901 arXiv Distance Based Source Domain Selection for Sentiment Classification
Propose a new domain selection method by combining existing distance functions
- 提出一种混合已有多种距离公式的源领域选择方法
20180901 KBS Transfer subspace learning via low-rank and discriminative reconstruction matrix
Transfer subspace learning via low-rank and discriminative reconstruction matrix
- 通过低秩和重构进行迁移学习
20180825 arXiv Transfer Learning for Estimating Causal Effects using Neural Networks
Using transfer learning for casual effect learning
- 用迁移学习进行因果推理
20180724 ICPKR-18 Knowledge-based Transfer Learning Explanation
Explain transfer learning things with some knowledge-based theory
- 用一些基于knowledge的方法解释迁移学习
- 20180628 arXiv 提出Office数据集的实验室又放出一个数据集用于close set、open set、以及object detection的迁移学习:Syn2Real: A New Benchmark forSynthetic-to-Real Visual Domain Adaptation
- 20180605 arXiv 解决federated learning中的数据不同分布的问题:Federated Learning with Non-IID Data
- 20180604 arXiv 在Open set domain adaptation中,用共享和私有部分重建进行问题的解决:Learning Factorized Representations for Open-set Domain Adaptation
- 20180403 arXiv 选择最优的子类生成方便迁移的特征:Class Subset Selection for Transfer Learning using Submodularity
- 20180326 ICMLA-17 在类别不平衡情况下比较了一些迁移学习和传统方法的性能,并做出一些结论:Comparing Transfer Learning and Traditional Learning Under Domain Class Imbalance
1.2. Domain Adaptation (领域自适应)
Including domain adaptation and partial domain adaptation.
1.2.1. Traditional Methods (传统迁移方法)
20200324 Domain Adaptation by Class Centroid Matching and Local Manifold Self-Learning
Domain adaptation by class centroid matching and local manifold self-learning
- 集合了聚类、中心匹配,及自学习的DA
20191204 arXiv Transferability versus Discriminability: Joint Probability Distribution Adaptation (JPDA)
Joint adaptation with different weights
- 不同权重的联合概率适配
20191125 AAAI-20 Unsupervised Domain Adaptation via Structured Prediction Based Selective Pseudo-Labeling
DA with selective pseudo label
- 结构化和选择性的伪标签用于DA
20190703 arXiv Domain Adaptation via Low-Rank Basis Approximation
Domain adaptation with low-rank basis approximation
- 低秩分解进行domain adaptation
20190508 IJCNN-19 Unsupervised Domain Adaptation using Graph Transduction Games
Domain adaptation using graph transduction games
- 用图转换博弈进行domain adaptation
20190403 ICME-19 Easy Transfer Learning By Exploiting Intra-domain Structures Code
An easy transfer learning approach with good performance
- 一个非常简单但效果很好的迁移方法
20180724 ACMMM-18 Visual Domain Adaptation with Manifold Embedded Distribution Alignment
The state-of-the-art results of domain adaptation, better than most traditional and deep methods
- 目前效果最好的非深度迁移学习方法,领先绝大多数最近的方法
- Code: MEDA
20180912 arXiv Unsupervised Domain Adaptation Based on Source-guided Discrepancy
Using source domain information to help domain adaptation
- 使用源领域数据辅助目标领域进行domain adaptation
20181219 arXiv Domain Adaptation on Graphs by Learning Graph Topologies: Theoretical Analysis and an Algorithm
Domain adaptation on graphs
- 在图上的领域自适应
20181121 arXiv Deep Discriminative Learning for Unsupervised Domain Adaptation
Deep discriminative learning for domain adaptation
- 同时进行源域和目标域上的分类判别
20181114 arXiv Multiple Subspace Alignment Improves Domain Adaptation
Project domains into multiple subsapce to do domain adaptation
- 将domain映射到多个subsapce上然后进行adaptation
20180912 ICIP-18 Structural Domain Adaptation with Latent Graph Alignment
Using graph alignment for domain adaptation
- 使用图对齐方式进行domain adaptation
20180912 IEEE Access Unsupervised Domain Adaptation by Mapped Correlation Alignment
Mapped correlation alignment for domain adaptation
- 用映射的关联对齐进行domain adaptation
20180912 ICALIP-18 Domain Adaptation for Gaussian Process Classification
Domain Adaptation for Gaussian Process Classification
- 在高斯过程分类中进行domain adaptation
- 20180701 arXiv 对domain adaptation问题,基于optimal transport提出一种新的特征选择方法:Feature Selection for Unsupervised Domain Adaptation using Optimal Transport
- 20180510 IEEE Trans. Cybernetics 提出一个通用的迁移学习框架,对不同的domain进行不同的特征变换:Transfer Independently Together: A Generalized Framework for Domain Adaptation
- 20180403 TIP-18 一篇传统方法做domain adaptation的文章,比很多深度方法结果都好:An Embarrassingly Simple Approach to Visual Domain Adaptation
- 20180326 ICMLA-17 利用subsapce alignment进行迁移学习:Transfer Learning for Large Scale Data Using Subspace Alignment
- 20180228 arXiv 一篇通过标签一致性和MMD准则进行domain adaptation的文章: Discriminative Label Consistent Domain Adaptation
- 20180226 AAAI-18 清华龙明盛组最新工作:Unsupervised Domain Adaptation with Distribution Matching Machines
- 20180110 arXiv 一篇比较新的传统方法做domain adaptation的文章 Close Yet Discriminative Domain Adaptation
- 20180105 arXiv 最优的贝叶斯迁移学习 Optimal Bayesian Transfer Learning
20171201 ICCV-17 When Unsupervised Domain Adaptation Meets Tensor Representations
第一篇将Tensor与domain adaptation结合的文章。代码
- 我的解读
201711 ICCV-17 Open set domain adaptation。
当source和target只共享某一些类别时,怎么处理?这个文章获得了ICCV 2017的Marr Prize Honorable Mention,值得好好研究。
- 我的解读
- 201710 Domain Adaptation in Computer Vision Applications 里面收录了若干篇domain adaptation的文章,可以大概看看。
- 20170812 ICML-18 Learning To Transfer,将迁移学习和增量学习的思想结合起来,为迁移学习的发展开辟了一个崭新的研究方向。我的解读
- CoRR abs/1610.04420 (2016) Theoretical Analysis of Domain Adaptation with Optimal Transport
迁移成分分析方法(Transfer component analysis, TCA)
- 发表在IEEE Trans. Neural Network期刊上(现改名为IEEE trans. Neural Network and Learning System),前作会议文章发在AAAI-09上
- 我的解读
联合分布适配方法(joint distribution adaptation,JDA)
Transfer Feature Learning with Joint Distribution Adaptation
- 发表在2013年的ICCV上
- 我的解读
测地线流式核方法(Geodesic flow kernel, GFK)
- 发表在CVPR-12上
- 我的解读
领域不变性迁移核学习(Transfer Kernel Learning, TKL)
- 发表在IEEE Trans. Knowledge and Data Engineering期刊上
1.2.2. Deep / Adversarial Methods (深度/对抗迁移方法)
20210329 ICLR-21 Tent: Fully Test-Time Adaptation by Entropy Minimization
Test time adaptation by entropy minimization
- 测试时通过熵最小化进行adaptation
20210329 Adversarial Branch Architecture Search for Unsupervised Domain Adaptation
NAS for domain adaptation
- 用神经网络结构搜索做领域自适应
20210312 Discrepancy-Based Active Learning for Domain Adaptation
Discrepancy and active learning for DA
- 基于主动学习的DA
20210312 Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Unbalanced minibatch OT for DA
- 非均衡的OT用于DA问题
20210127 Hierarchical Domain Invariant Variational Auto-Encoding with weak domain supervision
利用VAE和解耦去做domain generalization
- Using VAE and disentanglement for domain generalization
20201214 WWW-20 Domain Adaptation with Category Attention Network for Deep Sentiment Analysis
Unify pivots and non-pivots, and provide interpretability for domain adaptation in sentiment analysis
- 统一pivots和non-pivots,并提供可解释性进行DA情感分析
20201208 NIPS-20 Heuristic Domain Adaptation
启发式domain adaptation
20200804 ECCV-20 spotlight Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks
将现有的finetune机制进行扩展
- Extending finetune mechanism
- 20200804 ACMMM-20 Adversarial Bipartite Graph Learning for Video Domain Adaptation
- Video domain adaptation
- 视频的领域自适应
- 20200804 MICCAI-20 Whole MILC: generalizing learned dynamics across tasks, datasets, and populations
- Generalizing across tasks, datasets, populations
- 在任务、数据集、人群之间做泛化
20200724 Learning to Match Distributions for Domain Adaptation
自动深度迁移学习
- Automatic domain adaptation
20200529 TNNLS Deep Subdomain Adaptation Network for Image Classification
A fine-grained adaptation method with LMMD, which is very simple and effective
- 一种细粒度自适应的方法,使用LMMD进行对齐,该方法非常简单有效
20200420 arXiv One-vs-Rest Network-based Deep Probability Model for Open Set Recognition
One-vs-rest deep model for open set recognition
- 用于开放集的识别的深度网络
20200414 ICLR-20 Gradient as features for deep representation learning
Gradients as features for deep representation learning on pretrained models
- 在预训练模型基础上,将梯度作为额外的feature,提高学习表现
20200414 ICLR-20 Domain adaptive multi-branch networks
A domain adaptation framework using a multi-branch cascade structure
- 一个用了多层级联、多分支结构的DA框架
20200405 CVPR-20 Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Situations
A simple regularization-based adaptation method
- 一个非常简单的基于能量最小化的adaptation方法
20200210 AAAI-20 Bi-Directional Generation for Unsupervised Domain Adaptation
Bidirectional GANs for domain adaptation
- 双向的GAN用来做DA
20191202 PR-19 Correlation-aware Adversarial Domain Adaptation and Generalization
CORAL and adversarial for adaptation and generalization
- 基于CORAL和对抗网络的DA和DG
20191201 BMVC-19 Domain Adaptation for Object Detection via Style Consistency
Use style consistency for domain adaptation
- 通过结构一致性来进行domain adaptation
20191124 AAAI-20 Knowledge Graph Transfer Network for Few-Shot Recognition
GNN for semantic transfer for few-shot learning
- 用GNN进行类别的语义迁移用于few-shot learning
20191124 arXiv Improving Unsupervised Domain Adaptation with Variational Information Bottleneck
Information bottleneck for unsupervised da
- 用了信息瓶颈来进行DA
20191124 AAAI-20 (AdaFilter: Adaptive Filter Fine-tuning for Deep Transfer Learning)(https://arxiv.org/abs/1911.09659)
Adaptively determine which layer to transfer or finetune
- 自适应地决定迁移哪个层或微调哪个层
20191113 arXiv Knowledge Distillation for Incremental Learning in Semantic Segmentation
Knowledge distillation for incremental learning in semantic segmentation
- 在语义分割问题中针对增量学习进行知识蒸馏
20191111 NIPS-19 PointDAN: A Multi-Scale 3D Domain Adaption Network for Point Cloud Representation
Multi-scale 3D DA network for point cloud representation
20191111 CCIA-19 Feature discriminativity estimation in CNNs for transfer learning
Feature discriminativity estimation in CNN for TL
20191012 ICCV-19 Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation
Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation
- 直接適應:學習非監督域自適應的判別功能
20191015 arXiv Deep Kernel Transfer in Gaussian Processes for Few-shot Learning
Deep kernel transfer learing in Gaussian process
- 高斯过程中的深度迁移学习
20191008 EMNLP-19 workshop Domain Differential Adaptation for Neural Machine Translation
Embrace the difference between domains for adaptation
- 拥抱domain的不同,并利用这些不同帮助adaptation
20191008 BMVC-19 Multi-Weight Partial Domain Adaptation
Class and sample weight contribution for partial domain adaptation
- 同时考虑类别和样本比重用于部分迁移学习
20190813 ICCV-19 oral UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation
A unified framework for domain adaptation
- 一个统一的用于domain adaptation的框架
20190809 arXiv Multi-Purposing Domain Adaptation Discriminators for Pseudo Labeling Confidence
Improve pseudo label confidence using multi-purposing DA
- 用多目标DA提高伪标签准确率
20190809 arXiv Semi-supervised representation learning via dual autoencoders for domain adaptation
Semi-supervised learning via autoencoders
- 半监督autoencoder用于DA
20190809 arXiv Mind2Mind : transfer learning for GANs
Transfer learning using GANs
- 用GAN进行迁移学习
20190809 arXiv Self-supervised Domain Adaptation for Computer Vision Tasks
Self-supervised DA
- 自监督DA
20190809 arXiv Hidden Covariate Shift: A Minimal Assumption For Domain Adaptation
Hidden covariate shift
- 一种新的DA假设
20190809 PR-19 Cross-domain Network Representations
Cross-domain network representation learning
- 跨领域网络表达学习
20190809 ICCV-19 Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation
Adaptive Feature Norm Approach for Unsupervised Domain Adaptation
- 自适应的特征归一化用于DA
20190731 MICCAI-19 Unsupervised Domain Adaptation via Disentangled Representations: Application to Cross-Modality Liver Segmentation
Disentangled representations for unsupervised domain adaptation
- 基于解耦表征的无监督领域自适应
20190719 arXiv Agile Domain Adaptation
Domain adaptation by considering the difficulty in classification
- 通过考虑不同样本分离的难度进行domain adaptation
20190718 arXiv Measuring the Transferability of Adversarial Examples
Measure the transferability of adversarial examples
- 度量对抗样本的可迁移性
20190604 IJCAI-19 DANE: Domain Adaptive Network Embedding
Transfered network embeddings for different networks
- 不同网络表达的迁移
20190604 arXiv Learning to Transfer: Unsupervised Meta Domain Translation
Unsupervised meta domain translation
- 无监督领域翻译
20190530 arXiv Learning Bregman Divergences
Learning Bregman divergence
- 学习Bregman差异
20190530 arXiv Adversarial Domain Adaptation Being Aware of Class Relationships
Using class relationship for adversarial domain adaptation
- 利用类别关系进行对抗的domain adaptaition
20190530 arXiv Cross-Domain Transferability of Adversarial Perturbations
Cross-Domain Transferability of Adversarial Perturbations
20190525 PAMI-19 Learning More Universal Representations for Transfer-Learning
Learning more universal representations for transfer learning
- 对迁移学习设计2种方式学到更通用的表达
20190517 ICML-19 Learning What and Where to Transfer
Learning what and where to transfer in deep networks
- 学习深度网络从何处迁移
20190517 ICML-19 Zero-Shot Voice Style Transfer with Only Autoencoder Loss
Zero-shot voice style transfer with only autoencoder loss
- 零次声音迁移
20190515 CVPR-19 Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection
Domain adaptation for object detection
- 领域自适应用于物体检测
20190507 NAACL-HLT 19 Transfer of Adversarial Robustness Between Perturbation Types
Transfer of Adversarial Robustness Between Perturbation Types
20190416 arXiv ACE: Adapting to Changing Environments for Semantic Segmentation
Propose a new method that can adapt to new environments
- 提出一种可以适配不同环境的方法
20190416 arXiv Incremental multi-domain learning with network latent tensor factorization
Incremental multi-domain learning with network latent tensor factorization
- 网络隐性tensor分解应用于多领域增量学习
20190415 PAKDD-19 Parameter Transfer Unit for Deep Neural Networks
Propose a parameter transfer unit for DNN
- 对深度网络提出参数迁移单元
20190412 PAMI-19 Beyond Sharing Weights for Deep Domain Adaptation
Domain adaptation by not sharing weights
- 通过不共享权重来进行domain adaptation
20190405 IJCNN-19 Accelerating Deep Unsupervised Domain Adaptation with Transfer Channel Pruning
The first work to accelerate transfer learning
- 第一个加速迁移学习的工作
20190102 WSDM-19 Learning to Selectively Transfer: Reinforced Transfer Learning for Deep Text Matching
Reinforced transfer learning for deep text matching
- 迁移学习进行深度文本匹配
20190102 arXiv DART: Domain-Adversarial Residual-Transfer Networks for Unsupervised Cross-Domain Image Classification
Adversarial + residual for domain adaptation
- 对抗+残差进行domain adaptation
20181220 arXiv TWINs: Two Weighted Inconsistency-reduced Networks for Partial Domain Adaptation
Two weighted inconsistency-reduced networks for partial domain adaptation
- 两个权重网络用于部分domain adaptation
20181127 arXiv Learning Grouped Convolution for Efficient Domain Adaptation
Group convolution for domain adaptation
- 群体卷积进行domain adaptation
20181121 arXiv Unsupervised Domain Adaptation: An Adaptive Feature Norm Approach
A nonparametric method for domain adaptation
- 一种无参数的domain adaptation方法
20181121 arXiv Domain Adaptive Transfer Learning with Specialist Models
Sample reweighting methods for domain adaptative
- 样本权重更新法进行domain adaptation
20180926 ICLR-18 Self-ensembling for visual domain adaptation
Self-ensembling for domain adaptation
- 将self-ensembling应用于da
- 20180620 CVPR-18 用迁移学习进行fine tune:Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning
- 20180321 CVPR-18 构建了一个迁移学习算法,用于解决跨数据集之间的person-reidenfication: Unsupervised Cross-dataset Person Re-identification by Transfer Learning of Spatial-Temporal Patterns
- 20180315 ICLR-17 一篇综合进行two-sample stest的文章:Revisiting Classifier Two-Sample Tests
20171214 arXiv Investigating the Impact of Data Volume and Domain Similarity on Transfer Learning Applications
在实验中探索了数据量多少,和相似度这两个因素对迁移学习效果的影响
深度适配网络(Deep Adaptation Network, DAN)
发表在ICML-15上:learning transferable features with deep adaptation networks
- 我的解读
1.3. Domain Generalization
2021 Domain generalization: IJCAI-21 Generalizing to Unseen Domains: A Survey on Domain Generalization | 知乎文章 | 微信公众号
First survey on domain generalization
- 第一篇对Domain generalization (领域泛化)的综述
- 20180701 arXiv 做迁移时,只用source数据,不用target数据训练:Generalizing to Unseen Domains via Adversarial Data Augmentation
201711 ICLR-18 GENERALIZING ACROSS DOMAINS VIA CROSS-GRADIENT TRAINING
不同于以往的工作,本文运用贝叶斯网络建模label和domain的依赖关系,抓住training、inference 两个过程,有效引入domain perturbation来实现domain adaptation。
20181106 PRCV-18 Domain Attention Model for Domain Generalization in Object Detection
Adding attention for domain generalization
- 在domain generalization中加入了attention机制
20181225 WACV-19 Multi-component Image Translation for Deep Domain Generalization
Using GAN generated images for domain generalization
- 用GAN生成的图像进行domain generalization
20180724 arXiv Domain Generalization via Conditional Invariant Representation
Using Conditional Invariant Representation for domain generalization
- 生成条件不变的特征表达,用于domain generalization问题
20181212 arXiv Beyond Domain Adaptation: Unseen Domain Encapsulation via Universal Non-volume Preserving Models
Domain generalization method
- 一种针对于unseen domain的学习方法
20171210 AAAI-18 Learning to Generalize: Meta-Learning for Domain Generalization
将Meta-Learning与domain generalization结合的文章,可以联系到近期较为流行的few-shot learning进行下一步思考。
1.4. Multi-source Transfer Learning (多源迁移学习)
20200427 TriGAN: Image-to-Image Translation for Multi-Source Domain Adaptation
A cycle-gan style multi-source DA
- 类似于cyclegan的多源领域适应
20190902 AAAI-19 Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources
Multi-source domain adaptation using both features and classifier adaptation
- 利用特征和分类器同时适配进行多源迁移,效果很好
20181212 AIKP Multi-source Transfer Learning
Multi-source transfer
20181207 arXiv Moment Matching for Multi-Source Domain Adaptation
Moment matching and propose a new large dataset for domain adaptation
- 提出一种moment matching的网络,并且提出一种新的domain adaptation数据集,很大
- CoRR abs/1711.09020 (2017) StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
- 20180524 arXiv 探索了Multi-source迁移学习的一些理论:Algorithms and Theory for Multiple-Source Adaptation
20181117 AAAI-19 Robust Optimization over Multiple Domains
Optimization on multi domains
- 针对多个domain建模并优化
20180912 arXiv Multi-target Unsupervised Domain Adaptation without Exactly Shared Categories
Multi-target domain adaptation
- 多目标的domain adaptation
- 20180316 arXiv 用optimal transport解决domain adaptation中类别不平衡的问题:Optimal Transport for Multi-source Domain Adaptation under Target Shift
1.5. Heterogeneous Transfer Learning (异构迁移学习)
20190717 AAAI Heterogeneous Transfer Learning via Deep Matrix Completion with Adversarial Kernel Embedding
Transfer Learning via Deep Matrix Completion with Adversarial Kernel Embedding
- 异构迁移学习中用对抗核嵌入的深度矩阵
20190829 ACMMM-19 Heterogeneous Domain Adaptation via Soft Transfer Network
Soft-mmd loss in heterogeneous domain adaptation
- 异构迁移学习中用soft-mmd loss
20181113 ACML-18 Unsupervised Heterogeneous Domain Adaptation with Sparse Feature Transformation
Heterogeneous domain adaptation
- 异构domain adaptation
20180901 TKDE A General Domain Specific Feature Transfer Framework for Hybrid Domain Adaptation
Hybrid DA: special case in Heterogeneous DA
- 提出一种新的混合DA问题和方法
- 20180606 arXiv 一篇最近的对非对称情况下的异构迁移学习综述:Asymmetric Heterogeneous Transfer Learning: A Survey
- 20180403 Neural Processing Letters-18 异构迁移学习:Label Space Embedding of Manifold Alignment for Domain Adaption
- 20180105 arXiv 异构迁移学习 Heterogeneous transfer learning
1.6. Online Transfer Learning (在线迁移学习)
- 20180326 考虑主动获取label的budget情况下的在线迁移学习:Online domain adaptation by exploiting labeled features and pro-active learning
20180128 第一篇在线迁移学习的文章,发表在ICML-10上,系统性地定义了在线迁移学习的任务,给出了进行在线同构和异构迁移学习的两种学习模式。Online Transfer Learning
扩充的期刊文章发在2014年的AIJ上:Online Transfer Learning
- 我的解读
- 文章代码:OTL
20180126 两篇在线迁移学习:
Online transfer learning by leveraging multiple source domains
- Online Heterogeneous Transfer by Hedge Ensemble of Offline and Online Decisions
- 20180126 TKDE-17 同时有多个同构和异构源域时的在线迁移学习:Online Transfer Learning with Multiple Homogeneous or Heterogeneous Sources
- KIS-17 Online transfer learning by leveraging multiple source domains 提出一种综合衡量多个源域进行在线迁移学习的方法。文章的related work是很不错的survey。
- CIKM-13 OMS-TL: A Framework of Online Multiple Source Transfer Learning 第一次在mulitple source上做online transfer,也是用的分类器集成。
- ICLR-17 ONLINE BAYESIAN TRANSFER LEARNING FOR SEQUENTIAL DATA MODELING 用贝叶斯的方法学习在线的HMM迁移学习模型,并应用于行为识别、睡眠监测,以及未来流量分析。
- KDD-14 Scalable Hands-Free Transfer Learning for Online Advertising 提出一种无参数的SGD方法,预测广告量
- TNNLS-17 Online Feature Transformation Learning for Cross-Domain Object Category Recognition 在线feature transformation方法
- ICPR-12 Online Transfer Boosting for Object Tracking 在线transfer 样本
- TKDE-14 Online Feature Selection and Its Applications 在线特征选择
- AAAI-15 Online Transfer Learning in Reinforcement Learning Domains 应用于强化学习的在线迁移学习
- AAAI-15 Online Boosting Algorithms for Anytime Transfer and Multitask Learning 一种通用的在线迁移学习方法,可以适配在现有方法的后面
- IJSR-13 Knowledge Transfer Using Cost Sensitive Online Learning Classification 探索在线迁移方法,用样本cost
1.7. Zero-shot / Few-shot Learning
20210426 Few-shot Continual Learning: a Brain-inspired Approach
Few-shot continual learning
- 小样本持续学习
20201203 How to fine-tune deep neural networks in few-shot learning?
对few-shot任务如何fine-tune深度网络?
20201116 Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural Networks
量子神经网络中的finetune
20200608 ICML-20 Few-Shot Learning as Domain Adaptation: Algorithm and Analysis
Using domain adaptation to solve the few-shot learning
- 20200408 ICLR-20 A Baseline for Few-Shot Image Classification
- A simple finetune+entropy minimization approach with strong baseline
- 一个微调+最小化熵的小样本学习方法,结果很强
20200405 ICCV-19 Variational few-shot learning
Variational few-shot learning
- 变分小样本学习
20200405 ICLR-20 A baseline for few-shot image classification
A simple but powerful baseline for few-shot image classification
- 一个简单但是很有效的few-shot baseline
20200324 IEEE TNNLS Few-Shot Learning with Geometric Constraints
Few-shot learning with geometric constraints
- 用了一些几何约束进行小样本学习
20190813 arXiv Domain-Specific Embedding Network for Zero-Shot Recognition
Domain-specific embedding network for zero-shot learning
- 领域自适应的zero-shot learning
20190401 TIp-19 Few-Shot Deep Adversarial Learning for Video-based Person Re-identification
Few-shot deep adversarial learning
- Few-shot对抗学习
20190305 arXiv Zero-Shot Task Transfer
Zero-shot task transfer
- Zero-shot任务迁移学习
20190221 arXiv Adaptive Cross-Modal Few-Shot Learning
Adaptive cross-modal few-shot learning
- 跨模态的few-shot
- 20180612 CVPR-18 泛化的Zero-shot learning:Generalized Zero-Shot Learning via Synthesized Examples
20181106 arXiv Zero-Shot Transfer VQA Dataset
English: A dataset for zero-shot VQA transfer
- 中文:一个针对zero-shot VQA的迁移学习数据集
- 20171222 NIPS 2017 用adversarial网络,当target中有很少量的label时如何进行domain adaptation:Few-Shot Adversarial Domain Adaptation
20181225 arXiv Learning Compositional Representations for Few-Shot Recognition
Few-shot recognition
20181127 WACV-19 Self Paced Adversarial Training for Multimodal Few-shot Learning
Multimodal training for single modal testing
- 用多模态数据针对单一模态进行迁移
20180728 arXiv Meta-learning autoencoders for few-shot prediction
Using meta-learning for few-shot transfer learning
- 用元学习进行迁移学习
20171216 arXiv Zero-Shot Deep Domain Adaptation
当target domain的数据不可用时,如何用相关domain的数据进行辅助学习?
1.7.1. Zero-shot Learning based on Data Synthesis (基于样本生成的零样本学习)
20191204 arXiv MetAdapt: Meta-Learned Task-Adaptive Architecture for Few-Shot Classification
Task adaptive structure for few-shot learning
- 目标自适应的结构用于小样本学习
20190409 ICLR-19 A Closer Look at Few-shot Classification
Give some important conclusions on few-shot classification
- 在few-shot上给了一些有用的结论
20190401 IJCNN-19 Zero-shot Image Recognition Using Relational Matching, Adaptation and Calibration
Zero-shot image recognition
- 零次学习的图像识别
20190301 NeurIPS-18 workshp One-Shot Federated Learning
One-shot federated learning
20171022 ICCVW-17 Zero-shot learning posed as a missing data problem
算法首先学习 semantic embeddings 的结构性知识,利用学习到的知识和已知类的 image features 合成未知类的 image features。再利用无标记的未知类数据对合成数据进行修正。 算法假设未知类数据呈混合高斯分布,用 GMM-EM 算法进行无监督修正。
20180516 arXiv-18 A Large-scale Attribute Dataset for Zero-shot Learning
传统 ZSL 数据集(如 AwA, CUB)存在规模小,属性标注不丰富等问题。本文提出一个新的属性数据集 LAD 用于测试零样本学习算法。新数据集包含 230 类, 78,017 张图片,标注了 359 种属性。基于此数据集举办了 AI Challenger 零样本学习竞赛。 110+ 支来自海内外的参赛队伍提交了成绩。
20180710 ICML-18 MSplit LBI: Realizing Feature Selection and Dense Estimation Simultaneously in Few-shot and Zero-shot Learning
针对 L1 (欠拟合) 和 L2 (无特征选择、有偏) 正则项存在的问题,提出 MSplit LBI 用于同时实现特征选择和密集估计。在 Few-shot Learning 和 Zero-shot Learning 两个问题上进行了实验。实验表明 MSplit LBI 由优于 L1 和 L2。针对 ZSL 进行了特征可视化实验。
20190108 WACV-19 Zero-shot Learning via Recurrent Knowledge Transfer
基于样本合成的零样本学习算法通常将 semantic embeddings 的知识迁移到 image features 以实现 ZSL。然而,这种 training 和 testing space 的不一致,会导致这种迁移失效。因此,本文提出 Space Shift Problem,并针对此问题,提出一种(在 image feature space 和 semantic embedding space 之间)递归传递知识的解决方案。
1.8. Deep Transfer Learning (深度迁移学习)
1.8.1. Non-Adversarial Transfer Learning (非对抗深度迁移)
20210420 arXiv On Universal Black-Box Domain Adaptation
Universal black-box domain adaptation
- 黑盒情况下的universal domain adaptation
20210319 Learning Invariant Representations across Domains and Tasks
Automatically learn to match distributions
- 自动适配分布的任务适配网络
20191222 arXiv Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Generate data without priors for transfer learning based on deep dream
- 只用网络架构不用原来数据,生成新数据用于迁移
20191222 AAAI-20 Improved Knowledge Distillation via Teacher Assistant
Teacher assistant helps knowledge distillation
20191204 AAAI-20 Online Knowledge Distillation with Diverse Peers
Online Knowledge Distillation with Diverse Peers
20191201 arXiv A Unified Framework for Lifelong Learning in Deep Neural Networks
A unified framework for life-long learing in DNN
20191201 arXiv ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
20191119 ICDM-19 Towards Making Deep Transfer Learning Never Hurt
Towards making deep transfer learning never hurt
- 通过正则避免负迁移
20191119 NIPS-19 workshop Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis
Ensemble DA using noise labels
- 在ensemble中出现noise label时如何处理
20191119 NIPS-19 Transferable Normalization: Towards Improving Transferability of Deep Neural Networks
Transfer normalization
20191029 KBS Semi-supervised representation learning via dual autoencoders for domain adaptation
Semi-supervised domain adaptation with autoencoders
- 用自动编码器进行半监督的DA
20190929 NeurIPS-19 Deep Model Transferability from Attribution Maps
Using attribution map for network similarity
- 与cvpr18的taskmony类似,这次用了属性图的方式探索网络的相似性
20190926 arXiv Learning a Domain-Invariant Embedding for Unsupervised Domain Adaptation Using Class-Conditioned Distribution Alignment
Use class-conditional DA for domain adaptation
- 使用类条件对齐进行domain adaptation
20190926 arXiv A Deep Learning-Based Approach for Measuring the Domain Similarity of Persian Texts
Deep learning based domain similarity learning
- 利用深度学习进行领域相似度的学习
20190926 arXiv Transfer Learning across Languages from Someone Else’s NMT Model
Transfer learning across languages from NMT pretrained model
- 利用预训练好的NMT模型进行迁移学习
20190926 arXiv FEED: Feature-level Ensemble for Knowledge Distillation
Feature-level knowledge distillation
- 特征层面的知识蒸馏
20190926 ICCV-19 Self-similarity Grouping: A Simple Unsupervised Cross Domain Adaptation Approach for Person Re-identification
A simple approach for domain adaptation
- 一个很简单的DA方法
20190910 BMVC-19 Curriculum based Dropout Discriminator for Domain Adaptation
Curriculum dropout for domain adaptation
- 基于课程学习的dropout用于DA
20190909 IJCAI-FML-19 FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare
The first work on federated transfer learning for wearable healthcare
- 第一个将联邦迁移学习用于可穿戴健康监护的工作
20190909 PAMI Inferring Latent Domains for Unsupervised Deep Domain Adaptation
Inferring latent domains for unsupervised deep domain
- 在深度迁移学习中推断隐含领域
20190729 ICCV workshop Multi-level Domain Adaptive learning for Cross-Domain Detection
Multi-level domain adaptation for cross-domain Detection
- 多层次的domain adaptation
20190626 IJCAI-19 Bayesian Uncertainty Matching for Unsupervised Domain Adaptation
Bayesian uncertainty matching for da
- 贝叶斯网络用于da
20190419 CVPR-19 DDLSTM: Dual-Domain LSTM for Cross-Dataset Action Recognition
Dual-Domain LSTM for Cross-Dataset Action Recognition
- 跨数据集的动作识别
20190109 InfSc Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment
Extension of Central Moment Discrepancy (ICLR-17) approach
20181212 ICONIP-18 Domain Adaptation via Identical Distribution Across Models and Tasks
Transfer from large net to small net
- 从大网络迁移到小网络
20181212 AIKP Deep Domain Adaptation
Low-rank + deep nn for domain adaptation
- Low-rank用于深度迁移
20181211 arXiv Deep Variational Transfer: Transfer Learning through Semi-supervised Deep Generative Models
Transfer learning with deep generative model
- 通过深度生成模型进行迁移学习
20181207 arXiv Feature Matters: A Stage-by-Stage Approach for Knowledge Transfer
Feature transfer in student-teacher networks
- 在学生-教师网络中进行特征迁移
20181128 arXiv Low-resolution Face Recognition in the Wild via Selective Knowledge Distillation
Knowledge distilation for low-resolution face recognition
- 将知识蒸馏应用于低分辨率的人脸识别
20181128 arXiv One Shot Domain Adaptation for Person Re-Identification
One shot learning for REID
- One shot for再识别
20181123 arXiv SpotTune: Transfer Learning through Adaptive Fine-tuning
Very interesting work: how exactly determine the finetune process?
- 很有意思的工作:如何决定finetune的策略?
20181121 arXiv Integrating domain knowledge: using hierarchies to improve deep classifiers
Using hierarchies to help deep learning
- 借助于层次关系来帮助深度网络进行学习
20181117 arXiv AdapterNet - learning input transformation for domain adaptation
Learning input transformation for domain adaptation
- 对domain adaptation任务学习输入的自适应
20181115 AAAI-19 Exploiting Local Feature Patterns for Unsupervised Domain Adaptation
Local domain alignment for domain adaptation
- 局部领域自适应
20181115 NIPS-18 Co-regularized Alignment for Unsupervised Domain Adaptation
The idea is the same with the above one…
- 仍然是局部对齐。。。
20181113 NIPS-18 Generalized Zero-Shot Learning with Deep Calibration Network
Deep calibration network for zero-shot learning
- 提出deep calibration network进行zero-shot learning
20181110 AAAI-19 Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons
Transfer learning for bounding neuron activation boundaries
- 使用迁移学习进行神经元激活边界判定
20181109 PAMI-18 Transferable Representation Learning with Deep Adaptation Networks
Journal version of DAN paper
- DAN的Journal版本
20181108 arXiv Deep feature transfer between localization and segmentation tasks
Feature transfer between localization and segmentation
- 在定位与分割任务间进行迁移
20181107 BigData-18 Transfer learning for time series classification
First work on deep transfer learning for time series classification
- 第一个将深度迁移学习用于时间序列分类
20181106 PRCV-18 Deep Local Descriptors with Domain Adaptation
Adding MMD layers to conv and fc layers
- 在卷积和全连接层都加入MMD
20181106 LNCS-18 LSTN: Latent Subspace Transfer Network for Unsupervised Domain Adaptation
Combine subspace learning and neural network for DA
- 将子空间表示和深度网络结合起来用于DA
20181105 SIGGRAPI-18 Unsupervised representation learning using convolutional and stacked auto-encoders: a domain and cross-domain feature space analysis
Representation learning for cross-domains
- 跨领域的特征学习
20181105 arXiv Progressive Memory Banks for Incremental Domain Adaptation
Progressive memory bank in RNN for incremental DA
- 针对增量的domain adaptation,进行记忆单元的RNN学习
20180909 arXiv A Survey on Deep Transfer Learning
A survey on deep transfer learning
- 深度迁移学习的survey
20180901 arXiv Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation
deep domain adaptation + intra-class / inter-class distance
- 深度domain adaptation再加上类内类间距离学习
20180819 arXiv Conceptual Domain Adaptation Using Deep Learning
A search framework for deep transfer learning
- 提出一个可以搜索的framework进行迁移学习
20180731 ECCV-18 DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation
Deep + Joint distribution adaptation + optimal transport
- 深度 + 联合分布适配 + optimal transport
20180731 ICLR-18 Few Shot Learning with Simplex
Represent deep learning using the simplex
- 用单纯性表征深度学习
20180724 AIAI-18 Improving Deep Models of Person Re-identification for Cross-Dataset Usage
apply deep models to cross-dataset RE-ID
- 将深度迁移学习应用于跨数据集的Re-ID
20180724 ECCV-18 Zero-Shot Deep Domain Adaptation
Perform zero-shot domain adaptation when there is no target domain data available
- 当目标领域的数据不可用时如何进行domain adaptation :
20180724 ICCSE-18 Deep Transfer Learning for Cross-domain Activity Recognition
Provide source domain selection and activity recognition for cross-domain activity recognition
- 提出了跨领域行为识别中的深度方法模型,以及相关的领域选择方法
- 20180530 arXiv 用于深度网络的鲁棒性domain adaptation方法:Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment
- 20180522 arXiv 用CNN进行跨领域的属性学习:Cross-domain attribute representation based on convolutional neural network
- 20180428 CVPR-18 相互协同学习:Deep Mutual Learning
- 20180428 ICLR-18 自集成学习用于domain adaptation:Self-ensembling for visual domain adaptation
- 20180428 IJCAI-18 将knowledge distilation用于transfer learning,然后进行视频分类:Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification
- 20180426 arXiv 深度学习中的参数如何进行迁移?(杨强团队):Parameter Transfer Unit for Deep Neural Networks
- 20180425 CVPR-18(oral) 对不同的视觉任务进行建模,从而可以进行深层次的transfer:Taskonomy: Disentangling Task Transfer Learning
- 20180410 ICLR-17 第一篇用可变RNN进行多维时间序列迁移的文章:Variational Recurrent Adversarial Deep Domain Adaptation
- 20180403 arXiv 本地和云端CNN迁移融合的图片分类:Hierarchical Transfer Convolutional Neural Networks for Image Classification
- 20180402 CVPR-18 渐进式domain adaptation:Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation
- 20180329 arXiv 基于attention机制的多任务学习:End-to-End Multi-Task Learning with Attention
- 20180326 arXiv 将迁移学习用于Faster R-CNN对象识别中:Domain Adaptive Faster R-CNN for Object Detection in the Wild
- 20180326 Pattern Recognition-17 多标签迁移学习方法应用于脸部属性分类:Multi-label Learning Based Deep Transfer Neural Network for Facial Attribute Classification
- 20180326 类似于ResNet的思想,在传统layer的ReLU之前加一个additive layer进行domain adaptation,思想简洁,效果非常好:Layer-wise domain correction for unsupervised domain adaptation
- 20180326 Pattern Recognition-17 基于Batch normalization提出了AdaBN,很简单:Adaptive Batch Normalization for practical domain adaptation
- 20180309 arXiv 利用已有网络的先验知识来加速目标网络的训练:Transfer Automatic Machine Learning
- 2018 ICLR-18 最小熵领域对齐方法 Minimal-Entropy Correlation Alignment for Unsupervised Deep Domain Adaptation code
- 2018 arXiv 最新发表在arXiv上的深度domain adaptation的综述:Deep Visual Domain Adaptation: A Survey
- CoRR abs/1603.04779 (2016) AdaBN: Revisiting batch normalization for practical domain adaptation
- 20171226 NIPS 2016 把传统工作搬到深度网络中的范例:不是只学习domain之间的共同feature,还学习每个domain specific的feature。这篇文章写得非常清楚,通俗易懂! Domain Separation Networks | 代码
- 20171222 ICCV 2017 对于target中只有很少量的标记数据,用深度网络结合孪生网络的思想进行泛化:Unified Deep Supervised Domain Adaptation and Generalization | 代码和数据
20171126 NIPS-17 Label Efficient Learning of Transferable Representations acrosss Domains and Tasks
李飞飞小组发在NIPS 2017的文章。针对不同的domain、不同的feature、不同的label space,统一学习一个深度网络进行表征。
- 201711 一个很好的深度学习+迁移学习的实践教程,有代码有数据,可以直接上手:基于深度学习和迁移学习的识花实践
- CoRR abs/1412.3474 (2014) Deep Domain Confusion(DDC): Maximizing for Domain Invariance
发表在ICCV-15上,在传统深度迁移方法上又加了新东西
- 我的解读
深度适配网络(Deep Adaptation Network, DAN)
发表在ICML-15上:learning transferable features with deep adaptation networks
- 我的解读
深度联合适配网络(Joint Adaptation Network, JAN)
Deep Transfer Learning with Joint Adaptation Networks
- 延续了之前的DAN工作,这次考虑联合适配
1.8.2. Deep Adversarial Transfer Learning (对抗迁移学习)
20191214 arXiv Learning Domain Adaptive Features with Unlabeled Domain Bridges
Learning domain adaptive features with unlabeled CycleGAN
20191214 AAAI-20 Adversarial Domain Adaptation with Domain Mixup
Domain adaptation with data mixup
20190916 arXiv Compound Domain Adaptation in an Open World
Domain adaptation using the target domain knowledge
- 使用目标域的知识来进行domain adaptation
20101008 ICCV-19 Enhancing Adversarial Example Transferability with an Intermediate Level Attack
Enhancing adversarial examples transerability
- 增强对抗样本的可迁移性
20190531 arXiv Adaptive Deep Kernel Learning
Adaptive deep kernel learning
- 自适应深度核学习
20190531 arXiv Multi-task Learning in Deep Gaussian Processes with Multi-kernel Layers
Multi-task learning in deep Gaussian process
- 深度高斯过程中的多任务学习
20190531 arXiv Image Alignment in Unseen Domains via Domain Deep Generalization
Deep domain generalization for image alignment
- 深度领域泛化用于图像对齐
20190408 arXiv DeceptionNet: Network-Driven Domain Randomization
Using only source data for domain randomization
- 仅利用源域数据进行domain randomization
20190220 arXiv Fully-Featured Attribute Transfer
Fully-featured image attribute transfer
- 图像特征迁移
20190220 arXiv Unsupervised Domain Adaptation using Deep Networks with Cross-Grafted Stacks
Domain adaptation using deep learning with cross-grafted stacks
- 用跨领域嫁接栈进行domain adaptation
20181217 arXiv DLOW: Domain Flow for Adaptation and Generalization
Domain flow for adaptation and generalization
- 域流方法应用于领域自适应和扩展
20181212 arXiv Learning Transferable Adversarial Examples via Ghost Networks
Use ghost networks to learn transferrable adversarial examples
- 使用ghost网络来学习可迁移的对抗样本
20181211 arXiv Adversarial Transfer Learning
A survey on adversarial domain adaptation
- 一个关于对抗迁移的综述,特别用在domain adaptation上
20181205 arXiv Unsupervised Domain Adaptation using Generative Models and Self-ensembling
UDA using CycleGAN
- 基于CycleGAN的domain adaptation
20181205 arXiv VADRA: Visual Adversarial Domain Randomization and Augmentation
Domain randomization and augmentation
- Domain randomization和增强
20181130 arXiv Identity Preserving Generative Adversarial Network for Cross-Domain Person Re-identification
Cross-domain reID
- 跨领域的行人再识别
20181129 AAAI-19 Exploiting Coarse-to-Fine Task Transfer for Aspect-level Sentiment Classification
Aspect-level sentiment classification
- 迁移学习用于情感分类
20181128 arXiv Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping
CycleGAN for domain adaptation
- CycleGAN用于domain adaptation
20181127 arXiv Distorting Neural Representations to Generate Highly Transferable Adversarial Examples
Generate transferrable examples to fool networks
- 生成一些可迁移的对抗样本来迷惑神经网络,在各个网络上都表现好
- 20181123 arXiv Progressive Feature Alignment for Unsupervised Domain Adaptation
- Progressively selecting confident pseudo labeled samples for transfer
- 渐进式选择置信度高的伪标记进行迁移
20181113 NIPS-18 Conditional Adversarial Domain Adaptation
Using conditional GAN for domain adaptation
- 用conditional GAN进行domain adaptation
20181107 NIPS-18 Invariant Representations without Adversarial Training
Get invariant representations without adversarial training
- 不进行对抗训练获得不变特征表达
20181105 arXiv Efficient Multi-Domain Dictionary Learning with GANs
Dictionary learning for multi-domains using GAN
- 用GAN进行多个domain的字典学习
20181012 arXiv Domain Confusion with Self Ensembling for Unsupervised Adaptation
Domain confusion and self-ensembling for DA
- 用于Domain adaptation的confusion和self-ensembling方法
20180912 arXiv Improving Adversarial Discriminative Domain Adaptation
Improve ADDA using source domain labels
- 提高ADDA方法的精度,使用source domain的label
20180731 ECCV-18 Dist-GAN: An Improved GAN using Distance Constraints
Embed an autoencoder in GAN to improve its stability in training and propose two distances
- 将autoencoder集成到GAN中,提出相应的两种距离进行度量,提高了GAN的稳定性
- Code: Tensorflow
20180724 arXiv Generalization Bounds for Unsupervised Cross-Domain Mapping with WGANs
Provide a generalization bound for unsupervised WGAN in transfer learning
- 对迁移学习中无监督的WGAN进行了一些理论上的分析
20180724 ECCV-18 Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks
Using stacked CycleGAN to perform image-to-image translation
- 用stacked cycleGAN进行image-to-image的翻译
- 20180628 ICML-18 Pixel-level和feature-level的domain adaptation:CyCADA: Cycle-Consistent Adversarial Domain Adaptation
- 20180619 CVPR-18 将optimal transport加入adversarial中进行domain adaptation:Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation
- 20180616 CVPR-18 用GAN进行domain adaptation:Generate To Adapt: Aligning Domains using Generative Adversarial Networks
- 20180612 ICML-18 利用多个数据集辅助,从而提高目标领域的学习能力:RadialGAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks
- 20180612 ICML-18 利用GAN进行多个domain的联合分布优化:JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets
- 20180605 arXiv NAM: Non-Adversarial Unsupervised Domain Mapping
- 20180508 arXiv 利用GAN,从有限数据中生成另一个domain的数据:Transferring GANs: generating images from limited data
- 20180501 arXiv Open set domain adaptation的对抗网络版本:Open Set Domain Adaptation by Backpropagation
- 20180427 arXiv 提出了adversarial residual的概念,进行深度对抗迁移:Unsupervised Domain Adaptation with Adversarial Residual Transform Networks
- 20180424 CVPR-18 用GAN和迁移学习进行图像增强:Adversarial Feature Augmentation for Unsupervised Domain Adaptation
- 20180413 arXiv 一种思想非常简单的深度迁移方法,仅考虑进行domain之间的类别概率矫正就能取得非常好的效果:Simple Domain Adaptation with Class Prediction Uncertainty Alignment
- 20180413 arXiv Mingming Gong提出的用因果生成网络进行深度迁移:Causal Generative Domain Adaptation Networks
- 20180410 CVPR-18(oral) 用两个分类器进行对抗迁移:Maximum Classifier Discrepancy for Unsupervised Domain Adaptation 代码
- 20180403 CVPR-18 将样本权重应用于对抗partial transfer中:Importance Weighted Adversarial Nets for Partial Domain Adaptation
- 20180326 MLSP-17 把domain separation network和对抗结合起来,提出了一个对抗网络进行迁移学习:Adversarial domain separation and adaptation
- 20180326 ICIP-17 类似于domain separation network,加入了对抗判别训练,同时优化分类、判别、相似度三个loss:Semi-supervised domain adaptation via convolutional neural network
- 20180312 arXiv 来自Google Brain团队的Wasserstein Auto-Encoders 代码
- 20180226 CVPR-18 当源域的类别大于目标域的类别时,如何进行迁移学习?Partial Transfer Learning with Selective Adversarial Networks
- 20180116 ICLR-18 用对偶的形式替代对抗训练中原始问题的表达,从而进行分布对齐 Stable Distribution Alignment using the Dual of the Adversarial Distance
- 20180111 arXiv 在GAN中用原始问题的对偶问题替换max问题,使得梯度更好收敛 Stable Distribution Alignment Using the Dual of the Adversarial Distance
- 20180110 AAAI-18 将Wasserstein GAN用到domain adaptaiton中 Wasserstein Distance Guided Representation Learning for Domain Adaptation
20171218 arXiv Partial Transfer Learning with Selective Adversarial Networks
假设target domain中的class是包含在source domain中,然后进行选择性的对抗学习
- 201707 发表在CVPR-17上,目前最好的对抗迁移学习文章:Adversarial Representation Learning For Domain Adaptation
1.9. Multi-task Learning (多任务学习)
针对多任务学习的知识蒸馏
20200914 ECML-PKDD-20 Towards Interpretable Multi-Task Learning Using Bilevel Programming
用bilevel programming解释多任务学习
20191202 arXiv AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning
Learning what to share for multi-task learning
- 对多任务学习如何share
20191125 AAAI-20 Adaptive Activation Network and Functional Regularization for Efficient and Flexible Deep Multi-Task Learning
Adaptive activation network for deep multi-task learning
- 自适应的激活网络用于深度多任务学习
20191015 arXiv Gumbel-Matrix Routing for Flexible Multi-task Learning
Effective method for flexible multi-task learning
- 一种很有效的方法用于多任务学习
20190718 arXiv Task Selection Policies for Multitask Learning
Task selection in multitask learning
- 在多任务学习中的任务选择机制
20190509 FG-19 Multi-task human analysis in still images: 2D/3D pose, depth map, and multi-part segmentation
Multi-task human analysis in still images
- 多任务人体静止图像分析
20190409 NAACL-19 AutoSeM: Automatic Task Selection and Mixing in Multi-Task Learning
Automatic Task Selection and Mixing in Multi-Task Learning
- 多任务学习中自动任务选择和混淆
20190409 TNNLS-19 Heterogeneous Multi-task Metric Learning across Multiple Domains
Heterogeneous Multi-task Metric Learning across Multiple Domains
- 在多个领域之间进行异构多任务度量学习
20190409 NeurIPS-18 Synthesized Policies for Transfer and Adaptation across Tasks and Environments
Transfer across tasks and environments
- 通过任务和环境之间进行迁移
20190408 ICMR-19 Learning Task Relatedness in Multi-Task Learning for Images in Context
Using task relatedness in multi-task learning
- 在多任务学习中学习任务之间的相关性
20190408 CVPR-19 End-to-End Multi-Task Learning with Attention
End-to-End Multi-Task Learning with Attention
- 基于attention的端到端的多任务学习
20190401 arXiv Many Task Learning with Task Routing
From multi-task leanring to many-task learning
- 许多任务同时学习
20190324 arXiv A Principled Approach for Learning Task Similarity in Multitask Learning
Provide some theoretical analysis of the similarity learning in multi-task learning
- 为多任务学习中的相似度学习提供了一些理论分析
20181128 arXiv A Framework of Transfer Learning in Object Detection for Embedded Systems
A Framework of Transfer Learning in Object Detection for Embedded Systems
- 一个用于嵌入式系统的迁移学习框架
20181012 NIPS-18 Multi-Task Learning as Multi-Objective Optimization
Solve the multi-task learning as a multi-objective optimization problem
- 将多任务问题看成一个多目标优化问题进行求解
20181008 PSB-19 The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data
Evaluate the effectiveness of multitask learning for phenotyping
- 评估多任务学习对于表型的作用
20180828 arXiv Self-Paced Multi-Task Clustering
Multi-task clustering
- 多任务聚类
- 20180622 arXiv 探索了多任务迁移学习中的不确定性:Uncertainty in Multitask Transfer Learning
- 20180524 arXiv 杨强团队、与之前的learning to learning类似,这里提供了一个从经验中学习的learning to multitask框架:Learning to Multitask
1.10. Transfer Reinforcement Learning (强化迁移学习)
20191214 arXiv Does Knowledge Transfer Always Help to Learn a Better Policy?
Transfer learning in reinforcement learning
20191212 AAAI-20 Transfer value iteration networks
Transferred value iteration networks
20190821 arXiv Transfer in Deep Reinforcement Learning using Knowledge Graphs
Use knowledge graph to transfer in reinforcement learning
- 用知识图谱进行强化迁移
20190320 arXiv Learning to Augment Synthetic Images for Sim2Real Policy Transfer
Augment synthetic images for sim to real policy transfer
- 学习对于策略迁移如何合成图像
20190305 arXiv [Sim-to-Real Transfer for Biped Locomotion]
Transfer learning for robot locomotion
- 用迁移学习进行机器人定位
20190220 arXiv DIViS: Domain Invariant Visual Servoing for Collision-Free Goal Reaching
Transfer learning for robot reinforcement learning
- 迁移学习用于机器人的强化学习目标搜寻
20181212 NeurIPS-18 workshop Efficient transfer learning and online adaptation with latent variable models for continuous control
Reinforcement transfer learning with latent models
- 隐变量模型用于迁移强化学习的控制
20181128 arXiv Hardware Conditioned Policies for Multi-Robot Transfer Learning
Hardware Conditioned Policies for Multi-Robot Transfer Learning
- 多个机器人之间的迁移学习
20180926 arXiv Target Transfer Q-Learning and Its Convergence Analysis
Analyze the risk of transfer q-learning
- 提供了在Q learning的任务迁移中一些理论分析
20180926 arXiv Domain Adaptation in Robot Fault Diagnostic Systems
Apply domain adaptation in robot fault diagnostic system
- 将domain adaptation应用于机器人故障检测系统
20180912 arXiv VPE: Variational Policy Embedding for Transfer Reinforcement Learning
Policy transfer in reinforcement learning
- 增强学习中的策略迁移
20180909 arXiv Transferring Deep Reinforcement Learning with Adversarial Objective and Augmentation
deep + adversarial + reinforcement learning transfer
- 深度对抗迁移学习用于强化学习
- 20180530 ICML-18 强化迁移学习:Importance Weighted Transfer of Samples in Reinforcement Learning
- 20180524 arXiv 用深度强化学习的方法学习domain adaptation中的采样策略:Learning Sampling Policies for Domain Adaptation
- 20180516 arXiv 探索了强化学习中的任务迁移:Adversarial Task Transfer from Preference
- 20180413 NIPS-17 基于后继特征迁移的强化学习:Successor Features for Transfer in Reinforcement Learning
- 20180404 IEEE TETCI-18 用迁移学习来玩星际争霸游戏:StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning
1.11. Transfer Metric Learning (迁移度量学习)
20190515 TNNLS-19 A Distributed Approach towards Discriminative Distance Metric Learning
Discriminative distance metric learning
- 分布式度量学习
20190409 TNNLS-19 Heterogeneous Multi-task Metric Learning across Multiple Domains
Heterogeneous Multi-task Metric Learning across Multiple Domains
- 在多个领域之间进行异构多任务度量学习
20190409 PAMI-19 Transferring Knowledge Fragments for Learning Distance Metric from A Heterogeneous Domain
Heterogeneous transfer metric learning by transferring fragments
- 通过迁移知识片段来进行异构迁移度量学习
20190409 arXiv Decomposition-Based Transfer Distance Metric Learning for Image Classification
Transfer metric learning based on decomposition
- 基于特征向量分解的迁移度量学习
20181012 arXiv Transfer Metric Learning: Algorithms, Applications and Outlooks
A survey on transfer metric learning
- 一篇迁移度量学习的综述
- 20180622 arXiv 基于深度迁移学习的度量学习:DEFRAG: Deep Euclidean Feature Representations through Adaptation on the Grassmann Manifold
20181117 arXiv Distance Measure Machines
Machines that measures distances
- 衡量距离的算法
- 20180605 KDD-10 迁移度量学习:Transfer metric learning by learning task relationships
- 20180606 arXiv 将流形和统计信息联合起来构成一个domain adaptation框架:A Unified Framework for Domain Adaptation using Metric Learning on Manifolds
- 20180605 CVPR-15 深度度量迁移学习:Deep metric transfer learning
- 20180425 arXiv 探索各个层对于迁移任务的作用,方便以后的迁移。比较有意思:CactusNets: Layer Applicability as a Metric for Transfer Learning
1.12. Transitive Transfer Learning (传递迁移学习)
- 传递迁移学习的第一篇文章,来自杨强团队,发表在KDD-15上:Transitive Transfer Learning
- AAAI-17 杨强团队最新的传递迁移学习:Distant Domain Transfer Learning
20180819 LNCS-2018 Distant Domain Adaptation for Text Classification
Propose a selected algorithm for distant domain text classification
- 提出一个用于远域的文本分类方法
1.13. Lifelong Learning (终身迁移学习)
20190912 NeurIPS-19 Meta-Learning with Implicit Gradients
Meta-learning with implicit gradients
- 隐式梯度的元学习
- 20180323 arXiv 终身迁移学习与增量学习结合:Incremental Learning-to-Learn with Statistical Guarantees
- 20180111 arXiv 一种新的终身学习框架,与L2T的思路有一些类似 Lifelong Learning for Sentiment Classification
1.14. Negative Transfer (负迁移)
- 20181128 arXiv Characterizing and Avoiding Negative Transfer
- Analyzing and formalizing negative transfer, then propose a new method
- 分析并形式化负迁移,进而提出自己的方法
1.15. Transfer Learning Applications (应用)
See HERE for a full list of transfer learning applications.