小提琴图基础
小提琴图类似于直方图和箱形图,因为它们显示了样本概率分布的抽象表示。小提琴图使用核密度估计(KDE)来计算样本的经验分布,而不是显示属于分类或顺序统计的数据点的计数。该计算由几个参数控制。此示例演示如何修改评估KDE的点数 (points) 以及如何修改KDE (bw_method) 的带宽。
有关小提琴图和KDE的更多信息,请参阅scikit-learn文档 有一个很棒的部分:http://scikit-learn.org/stable/modules/density.html

import numpy as npimport matplotlib.pyplot as plt# Fixing random state for reproducibilitynp.random.seed(19680801)# fake datafs = 10 # fontsizepos = [1, 2, 4, 5, 7, 8]data = [np.random.normal(0, std, size=100) for std in pos]fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6))axes[0, 0].violinplot(data, pos, points=20, widths=0.3,showmeans=True, showextrema=True, showmedians=True)axes[0, 0].set_title('Custom violinplot 1', fontsize=fs)axes[0, 1].violinplot(data, pos, points=40, widths=0.5,showmeans=True, showextrema=True, showmedians=True,bw_method='silverman')axes[0, 1].set_title('Custom violinplot 2', fontsize=fs)axes[0, 2].violinplot(data, pos, points=60, widths=0.7, showmeans=True,showextrema=True, showmedians=True, bw_method=0.5)axes[0, 2].set_title('Custom violinplot 3', fontsize=fs)axes[1, 0].violinplot(data, pos, points=80, vert=False, widths=0.7,showmeans=True, showextrema=True, showmedians=True)axes[1, 0].set_title('Custom violinplot 4', fontsize=fs)axes[1, 1].violinplot(data, pos, points=100, vert=False, widths=0.9,showmeans=True, showextrema=True, showmedians=True,bw_method='silverman')axes[1, 1].set_title('Custom violinplot 5', fontsize=fs)axes[1, 2].violinplot(data, pos, points=200, vert=False, widths=1.1,showmeans=True, showextrema=True, showmedians=True,bw_method=0.5)axes[1, 2].set_title('Custom violinplot 6', fontsize=fs)for ax in axes.flatten():ax.set_yticklabels([])fig.suptitle("Violin Plotting Examples")fig.subplots_adjust(hspace=0.4)plt.show()
