给你一个数组 time ,其中 time[i] 表示第 i 辆公交车完成 一趟旅途 所需要花费的时间。
每辆公交车可以 连续 完成多趟旅途,也就是说,一辆公交车当前旅途完成后,可以 立马开始 下一趟旅途。每辆公交车 独立 运行,也就是说可以同时有多辆公交车在运行且互不影响。
给你一个整数 totalTrips ,表示所有公交车 总共 需要完成的旅途数目。请你返回完成 至少 totalTrips 趟旅途需要花费的 最少 时间。
示例 1:
输入:time = [1,2,3], totalTrips = 5
输出:3
解释:
- 时刻 t = 1 ,每辆公交车完成的旅途数分别为 [1,0,0] 。
已完成的总旅途数为 1 + 0 + 0 = 1 。 - 时刻 t = 2 ,每辆公交车完成的旅途数分别为 [2,1,0] 。
已完成的总旅途数为 2 + 1 + 0 = 3 。 - 时刻 t = 3 ,每辆公交车完成的旅途数分别为 [3,1,1] 。
已完成的总旅途数为 3 + 1 + 1 = 5 。
所以总共完成至少 5 趟旅途的最少时间为 3 。
示例 2:
输入:time = [2], totalTrips = 1
输出:2
解释:
只有一辆公交车,它将在时刻 t = 2 完成第一趟旅途。
所以完成 1 趟旅途的最少时间为 2 。
提示:
1 <= time.length <= 105
1 <= time[i], totalTrips <= 107
class Solution {
public long minimumTime(int[] time, int totalTrips) {
Arrays.sort(time);
long maxi = (long)time[0] * totalTrips;
if (time.length == 1) return maxi;
long l = 1, r = maxi;
while (l < r) {
long mid = l + r >> 1;
if (check(time, totalTrips, mid)) r = mid;
else l = mid + 1;
}
return l;
}
private boolean check(int[] time, int target, long count) {
int n = time.length;
long ans = 0;
for (int i = 0; i < n; i++) {
ans += (count / time[i]);
if (ans >= target) return true;
}
return ans >= target;
}
}