给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。
一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。
返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。
示例 1:
输入:grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]]
输出:3
解释:有三个 1 被 0 包围。一个 1 没有被包围,因为它在边界上。
示例 2:
输入:grid = [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]]
输出:0
解释:所有 1 都在边界上或可以到达边界。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 500
grid[i][j] 的值为 0 或 1
多源bfs
class Solution {/**将所有「边缘陆地」看做与超级源点相连,起始将所有「边缘陆地」进行入队(等价于只将超级源点入队,然后取出超级源点并进行拓展)。然后是常规的 BFS 过程,所有能够出队/入队的陆地格子,都代表与「边缘陆地」联通,都不属于「飞地」,对其进行标记。最后遍历整个棋盘,统计所有未被标记的「陆地」格子数量即是答案。*/static int[] dirs = new int[]{-1,0,1,0,-1};public int numEnclaves(int[][] grid) {int n = grid.length, m = grid[0].length;Deque<int[]> q = new ArrayDeque<>();int res = 0;for (int i = 0; i < n; ++i)for (int j = 0; j < m; ++j)if ((i == 0 || i == n-1 || j == 0 || j == m-1) && grid[i][j] == 1) {q.addLast(new int[]{i,j});while (!q.isEmpty()) {int[] t = q.pollFirst();int x = t[0], y = t[1];grid[x][y] = 0;for (int k = 0; k < 4; ++k) {int a = x + dirs[k], b = y + dirs[k+1];if (a < 0 || a >= n || b < 0 || b >= m)continue;if (grid[a][b] == 1) q.addLast(new int[]{a,b});}}}for (int i = 0; i < n; ++i)for (int j = 0; j < m; ++j)if (grid[i][j] == 1) res++;return res;}}
并查集&DFS
class Solution {int N = 550;int[] p = new int[N*N];int m,n;int[][] g;int[] dirs = new int[]{-1,0,1,0,-1};int find(int x) {if (x != p[x]) p[x] = find(p[x]);return p[x];}boolean query(int x, int y) {return find(x) == find(y);}void union(int x, int y) {p[find(x)] = find(y);}int getIdx(int x, int y) {return x * m + y + 1; //偏移量}public int numEnclaves(int[][] grid) {g = grid;n = g.length; m = g[0].length;//先初始化并查集,让每个单元格为一个连通块for (int i = 0; i < n; ++i)for (int j = 0; j < m; ++j)p[getIdx(i,j)] = getIdx(i,j);//标记边缘陆地for (int i = 0; i < n; ++i)for (int j = 0; j < m; ++j)if (i == 0 || i == n-1 || j == 0 || j == m-1) {if (g[i][j] == 0 || query(getIdx(i,j),0)) continue;dfs(i,j);}int res = 0;for (int i = 0; i < n; ++i)for (int j = 0; j < m; ++j)if (g[i][j] == 1 && !query(getIdx(i,j),0)) res++;return res;}void dfs(int x, int y) {union(getIdx(x,y),0);for (int i = 0; i < 4; ++i) {int a = x + dirs[i], b = y + dirs[i+1];if (a < 0 || a >= n || b < 0 || b >= m) continue;//判重,如果是超级源点块就跳过if (g[a][b] == 0 || query(getIdx(a,b),0)) continue;dfs(a,b);}}}
class Solution {int[][] grid;int n, m;int[] dirs = new int[]{-1, 0, 1, 0, -1};public int numEnclaves(int[][] grid) {this.grid = grid;n = grid.length; m = grid[0].length;//直接从边缘的1出发深搜for (int i = 0; i < n; ++i) {if (grid[i][0] == 1) dfs(i, 0);if (grid[i][m - 1] == 1) dfs(i, m - 1);}for (int i = 0; i < m; ++i) {if (grid[0][i] == 1) dfs(0, i);if (grid[n - 1][i] == 1) dfs(n - 1, i);}int res = 0;for (int i = 0; i < n; ++i)for (int j = 0; j < m; ++j)if (grid[i][j] == 1) res++;return res;}void dfs(int x, int y) {grid[x][y] = 0;for (int i = 0; i < 4; ++i) {int a = x + dirs[i], b = y + dirs[i + 1];if (a < 0 || a >= n || b < 0 || b >= m) continue;if (grid[a][b] == 0) continue;dfs(a, b);}}}
