我们有 n 栋楼,编号从 0 到 n - 1 。每栋楼有若干员工。由于现在是换楼的季节,部分员工想要换一栋楼居住。
给你一个数组 requests ,其中 requests[i] = [fromi, toi] ,表示一个员工请求从编号为 fromi 的楼搬到编号为 toi 的楼。
一开始 所有楼都是满的,所以从请求列表中选出的若干个请求是可行的需要满足 每栋楼员工净变化为 0 。意思是每栋楼 离开 的员工数目 等于 该楼 搬入 的员工数数目。比方说 n = 3 且两个员工要离开楼 0 ,一个员工要离开楼 1 ,一个员工要离开楼 2 ,如果该请求列表可行,应该要有两个员工搬入楼 0 ,一个员工搬入楼 1 ,一个员工搬入楼 2 。
请你从原请求列表中选出若干个请求,使得它们是一个可行的请求列表,并返回所有可行列表中最大请求数目。
示例 1:
输入:n = 5, requests = [[0,1],[1,0],[0,1],[1,2],[2,0],[3,4]]
输出:5
解释:请求列表如下:
从楼 0 离开的员工为 x 和 y ,且他们都想要搬到楼 1 。
从楼 1 离开的员工为 a 和 b ,且他们分别想要搬到楼 2 和 0 。
从楼 2 离开的员工为 z ,且他想要搬到楼 0 。
从楼 3 离开的员工为 c ,且他想要搬到楼 4 。
没有员工从楼 4 离开。
我们可以让 x 和 b 交换他们的楼,以满足他们的请求。
我们可以让 y,a 和 z 三人在三栋楼间交换位置,满足他们的要求。
所以最多可以满足 5 个请求。
示例 2:
输入:n = 3, requests = [[0,0],[1,2],[2,1]]
输出:3
解释:请求列表如下:
从楼 0 离开的员工为 x ,且他想要回到原来的楼 0 。
从楼 1 离开的员工为 y ,且他想要搬到楼 2 。
从楼 2 离开的员工为 z ,且他想要搬到楼 1 。
我们可以满足所有的请求。
示例 3:
输入:n = 4, requests = [[0,3],[3,1],[1,2],[2,0]]
输出:4
提示:
1 <= n <= 20
1 <= requests.length <= 16
requests[i].length == 2
0 <= fromi, toi < n
class Solution {
//二进制枚举
int[][] rq;
public int maximumRequests(int n, int[][] requests) {
rq = requests;
int res = 0, m = requests.length;
for (int i = 0; i < (1 << m); i++) {
int cnt = get(i);
if (cnt < res) continue; //剪枝
//当前状态合法
if (check(i)) res = cnt;
}
return res;
}
private int get(int x) {
int cnt = 0;
while (x != 0) {
if ((x & 1) == 1) cnt++;
x >>= 1;
}
return cnt;
}
private boolean check(int x) {
int[] cnts = new int[20];
int diff = 0; //差异量
for (int i = 0; i < 16; i++)
if (((x >> i) & 1) == 1) {
//如果刚好减为0,差异量减一
if (--cnts[rq[i][0]] == 0) diff--;
//如果刚好是0,要增加,差异量加一
if (++cnts[rq[i][1]] == 1) diff++;
}
// for (int i = 0; i < 20; i++)
// if (cnts[i] != 0) return false;
return diff == 0;
}
}