给你一个 n x n 整数矩阵 arr ,请你返回 非零偏移下降路径 数字和的最小值。
非零偏移下降路径 定义为:从 arr 数组中的每一行选择一个数字,且按顺序选出来的数字中,相邻数字不在原数组的同一列。
示例 1:
输入:arr = [[1,2,3],[4,5,6],[7,8,9]]
输出:13
解释:
所有非零偏移下降路径包括:
[1,5,9], [1,5,7], [1,6,7], [1,6,8],
[2,4,8], [2,4,9], [2,6,7], [2,6,8],
[3,4,8], [3,4,9], [3,5,7], [3,5,9]
下降路径中数字和最小的是 [1,5,7] ,所以答案是 13 。
示例 2:
输入:grid = [[7]]
输出:7
提示:
n == grid.length == grid[i].length
1 <= n <= 200
-99 <= grid[i][j] <= 99
class Solution {
/**
f[i][j] 表示到第i行第j列的最小路径和
不能枚举正上方的格子
*/
public int minFallingPathSum(int[][] grid) {
int n = grid.length, m = grid[0].length;
int[][] f = new int[n + 1][m + 1];
//初始化第一行
for (int i = 0; i < m; ++i) f[0][i] = grid[0][i];
for (int i = 1; i < n; ++i)
for (int j = 0; j < m; ++j) {
f[i][j] = Integer.MAX_VALUE;
int val = grid[i][j];
//需要枚举上一行的列数保证不能跟当前列相等
for (int k = 0; k < m; ++k)
if (k != j)
f[i][j] = Math.min(f[i][j], f[i - 1][k] + val);
}
int res = Integer.MAX_VALUE;
for (int i = 0; i < m; ++i)
res = Math.min(res, f[n - 1][i]);
return res;
}
}
优化
class Solution {
/**
f[i][j] 表示到第i行第j列的最小路径和
不能枚举正上方的格子
优化:由于我们每次都得枚举上一行的每列,所以是n3方
其实我们只要维护每行的最小值,和次小值即可,当我们访问最小值所对应的j时,换成次小值即可,其他均采用最小值
*/
public int minFallingPathSum(int[][] grid) {
int n = grid.length;
int[][] f = new int[n + 1][n + 1];
//a 表示最小值下标, b表示次小值下标
int a = -1, b = -1;
//初始化第一行
for (int i = 0; i < n; ++i) {
f[0][i] = grid[0][i];
if (a == -1 || grid[0][i] < f[0][a]) {
b = a;
a = i;
} else if (b == -1 || grid[0][i] < f[0][b])
b = i;
}
for (int i = 1; i < n; ++i) {
int i1 = -1, i2 = -1; //保存当前行的最小值和次小值下标
for (int j = 0; j < n; ++j) {
f[i][j] = Integer.MAX_VALUE;
int val = grid[i][j];
//判断是不是最小值下标
if (j != a) f[i][j] = f[i - 1][a] + val;
else f[i][j] = f[i - 1][b] + val;
//更新最小值次小值下标
//注意这里用来更新的是f[i][j]
if (i1 == -1 || f[i][j] < f[i][i1]) {
i2 = i1;
i1 = j;
} else if (i2 == -1 || f[i][j] < f[i][i2])
i2 = j;
}
a = i1; b = i2;
}
int res = Integer.MAX_VALUE;
for (int i = 0; i < n; ++i)
res = Math.min(res, f[n - 1][i]);
return res;
}
}