有 NN 种物品和一个容量是 VV 的背包。
第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
输出格式
数据范围
0
提示:
输入样例
输出样例:
10
import java.util.*;
import java.io.*;
public class Main {
static BufferedReader cin = new BufferedReader(new InputStreamReader(System.in));
public static void main(String[] args) throws IOException {
String[] ss = cin.readLine().split(" ");
int n = Integer.valueOf(ss[0]), m = Integer.valueOf(ss[1]);
int[] f = new int[m+1];
List<int[]> list = new ArrayList<>();
for (int i = 1; i <= n; ++i) {
ss = cin.readLine().split(" ");
int v = Integer.valueOf(ss[0]), w = Integer.valueOf(ss[1]), s = Integer.valueOf(ss[2]);
for (int j = 1; j <= s; j *= 2) {
s -= j;
list.add(new int[]{v * j, w * j});
}
if (s > 0) list.add(new int[]{v * s, w * s});
}
for (int[] t : list) {
for (int j = m; j >= t[0]; --j)
f[j] = Math.max(f[j], f[j - t[0]] + t[1]);
}
System.out.println(f[m]);
}
}