Java 类名:com.alibaba.alink.operator.batch.classification.XGBoostTrainBatchOp
Python 类名:XGBoostTrainBatchOp
功能介绍
XGBoost 组件是在开源社区的基础上进行包装,使功能和 PAI 更兼容,更易用。
XGBoost 算法在 Boosting 算法的基础上进行了扩展和升级,具有较好的易用性和鲁棒性,被广泛用在各种机器学习生产系统和竞赛领域。
当前支持分类,回归和排序。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
numRound | 树的棵树 | 树的棵树 | Integer | ✓ | ||
alpha | L1 正则项 | L1 正则项 | Double | 1.0 | ||
baseScore | Base score | Base score | Double | 0.5 | ||
colSampleByLevel | 每个树列采样 | 每个树列采样 | Double | 1.0 | ||
colSampleByNode | 每个结点列采样 | 每个结点采样 | Double | 1.0 | ||
colSampleByTree | 每个树列采样 | 每个树列采样 | Double | 1.0 | ||
eta | 学习率 | 学习率 | Double | 0.3 | ||
featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null | |
gamma | 结点分裂最小损失变化 | 节点分裂最小损失变化 | Double | 0.0 | ||
growPolicy | GrowPolicy | GrowPolicy | String | “DEPTH_WISE”, “LOSS_GUIDE” | “DEPTH_WISE” | |
interactionConstraints | interaction constraints | interaction constraints | String | null | ||
lambda | L2 正则项 | L2 正则项 | Double | 1.0 | ||
maxBin | 最大结点个数 | 最大结点个数 | Integer | 256 | ||
maxDeltaStep | Delta step | Delta step | Double | 0.0 | ||
maxDepth | 最大深度 | 最大深度 | Integer | 6 | ||
maxLeaves | 最大结点个数 | 最大结点个数 | Integer | 0 | ||
minChildWeight | 结点的最小权重 | 结点的最小权重 | Double | 1.0 | ||
monotoneConstraints | monotone constraints | monotone constraints | String | null | ||
numClass | 标签类别个数 | 标签类别个数, 多分类时有效 | Integer | 0 | ||
objective | objective | objective | String | “BINARY_LOGISTIC”, “BINARY_LOGITRAW”, “BINARY_HINGE”, “MULTI_SOFTMAX”, “MULTI_SOFTPROB” | “BINARY_LOGISTIC” | |
pluginVersion | 插件版本号 | 插件版本号 | String | “1.5.1” | ||
processType | ProcessType | ProcessType | String | “DEFAULT”, “UPDATE” | “DEFAULT” | |
refreshLeaf | RefreshLeaf | RefreshLeaf | Integer | 1 | ||
runningMode | 运行模式 | XGBoost的运行模型,ICQ速度快,但使用内存多,TRIAVIAL速度略慢,但是节省内存,按照流式方式处理。由于训练数据本身在XGBoost运行时已经被缓存进内存,所以存两份和存一份数据的资源消耗和速度对比,还需要进一步的测试。 | String | “ICQ”, “TRIVIAL” | “TRIVIAL” | |
samplingMethod | 采样方法 | 采样方法 | String | “UNIFORM”, “GRADIENT_BASED” | “UNIFORM” | |
scalePosWeight | ScalePosWeight | ScalePosWeight | Double | 1.0 | ||
singlePrecisionHistogram | single precision histogram | single precision histogram | Boolean | false | ||
sketchEps | SketchEps | SketchEps | Double | 0.03 | ||
subSample | 样本采样比例 | 样本采样比例 | Double | 1.0 | ||
treeMethod | 构建树的方法 | 构建树的方法 | String | “AUTO”, “EXACT”, “APPROX”, “HIST” | “AUTO” | |
updater | Updater | Updater | String | “grow_colmaker,prune” | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
df = pd.DataFrame([
[0, 1, 1.1, 1.0],
[1, -2, 0.9, 2.0],
[0, 100, -0.01, 3.0],
[1, -99, 0.1, 4.0],
[0, 1, 1.1, 5.0],
[1, -2, 0.9, 6.0]
])
batchSource = BatchOperator.fromDataframe(
df, schemaStr='y int, x1 int, x2 double, x3 double'
)
streamSource = StreamOperator.fromDataframe(
df, schemaStr='y int, x1 int, x2 double, x3 double'
)
trainOp = XGBoostTrainBatchOp()\
.setNumRound(1)\
.setPluginVersion('1.5.1')\
.setLabelCol('y')\
.linkFrom(batchSource)
predictBatchOp = XGBoostPredictBatchOp()\
.setPredictionDetailCol('pred_detail')\
.setPredictionCol('pred')\
.setPluginVersion('1.5.1')
predictStreamOp = XGBoostPredictStreamOp(trainOp)\
.setPredictionDetailCol('pred_detail')\
.setPredictionCol('pred')\
.setPluginVersion('1.5.1')
predictBatchOp.linkFrom(trainOp, batchSource).print()
predictStreamOp.linkFrom(streamSource).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.XGBoostPredictBatchOp;
import com.alibaba.alink.operator.batch.classification.XGBoostTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.classification.XGBoostPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class XGBoostTrainBatchOpTest {
@Test
public void testXGBoostTrainBatchOp() throws Exception {
List <Row> data = Arrays.asList(
Row.of(0, 1, 1.1, 1.0),
Row.of(1, -2, 0.9, 2.0),
Row.of(0, 100, -0.01, 3.0),
Row.of(1, -99, 0.1, 4.0),
Row.of(0, 1, 1.1, 5.0),
Row.of(1, -2, 0.9, 6.0)
);
BatchOperator <?> batchSource = new MemSourceBatchOp(data, "y int, x1 int, x2 double, x3 double");
StreamOperator <?> streamSource = new MemSourceStreamOp(data, "y int, x1 int, x2 double, x3 double");
BatchOperator <?> trainOp = new XGBoostTrainBatchOp()
.setNumRound(1)
.setPluginVersion("1.5.1")
.setLabelCol("y")
.linkFrom(batchSource);
BatchOperator <?> predictBatchOp = new XGBoostPredictBatchOp()
.setPredictionDetailCol("pred_detail")
.setPredictionCol("pred")
.setPluginVersion("1.5.1");
StreamOperator <?> predictStreamOp = new XGBoostPredictStreamOp(trainOp)
.setPredictionDetailCol("pred_detail")
.setPredictionCol("pred")
.setPluginVersion("1.5.1");
predictBatchOp.linkFrom(trainOp, batchSource).print();
predictStreamOp.linkFrom(streamSource).print();
StreamOperator.execute();
}
}