Java 类名:com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp
Python 类名:GmmPredictStreamOp
功能介绍
基于GaussianMixture模型进行聚类预测。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
["-0.6264538 0.1836433"],
["-0.8356286 1.5952808"],
["0.3295078 -0.8204684"],
["0.4874291 0.7383247"],
["0.5757814 -0.3053884"],
["1.5117812 0.3898432"],
["-0.6212406 -2.2146999"],
["11.1249309 9.9550664"],
["9.9838097 10.9438362"],
["10.8212212 10.5939013"],
["10.9189774 10.7821363"],
["10.0745650 8.0106483"],
["10.6198257 9.9438713"],
["9.8442045 8.5292476"],
["9.5218499 10.4179416"],
])
data = BatchOperator.fromDataframe(df_data, schemaStr='features string')
dataStream = StreamOperator.fromDataframe(df_data, schemaStr='features string')
gmm = GmmTrainBatchOp() \
.setVectorCol("features") \
.setEpsilon(0.)
model = gmm.linkFrom(data)
predictor = GmmPredictBatchOp() \
.setPredictionCol("cluster_id") \
.setVectorCol("features") \
.setPredictionDetailCol("cluster_detail")
predictor.linkFrom(model, data).print()
predictorStream = GmmPredictStreamOp(model) \
.setPredictionCol("cluster_id") \
.setVectorCol("features") \
.setPredictionDetailCol("cluster_detail")
predictorStream.linkFrom(dataStream).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.clustering.GmmPredictBatchOp;
import com.alibaba.alink.operator.batch.clustering.GmmTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class GmmPredictStreamOpTest {
@Test
public void testGmmPredictStreamOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of("-0.6264538 0.1836433"),
Row.of("-0.8356286 1.5952808"),
Row.of("0.3295078 -0.8204684"),
Row.of("0.4874291 0.7383247"),
Row.of("0.5757814 -0.3053884"),
Row.of("1.5117812 0.3898432"),
Row.of("-0.6212406 -2.2146999"),
Row.of("11.1249309 9.9550664"),
Row.of("9.9838097 10.9438362"),
Row.of("10.8212212 10.5939013"),
Row.of("10.9189774 10.7821363"),
Row.of("10.0745650 8.0106483"),
Row.of("10.6198257 9.9438713"),
Row.of("9.8442045 8.5292476"),
Row.of("9.5218499 10.4179416")
);
BatchOperator <?> data = new MemSourceBatchOp(df_data, "features string");
StreamOperator <?> dataStream = new MemSourceStreamOp(df_data, "features string");
BatchOperator <?> gmm = new GmmTrainBatchOp()
.setVectorCol("features")
.setEpsilon(0.);
BatchOperator <?> model = gmm.linkFrom(data);
BatchOperator <?> predictor = new GmmPredictBatchOp()
.setPredictionCol("cluster_id")
.setVectorCol("features")
.setPredictionDetailCol("cluster_detail");
predictor.linkFrom(model, data).print();
StreamOperator <?> predictorStream = new GmmPredictStreamOp(model)
.setPredictionCol("cluster_id")
.setVectorCol("features")
.setPredictionDetailCol("cluster_detail");
predictorStream.linkFrom(dataStream).print();
StreamOperator.execute();
}
}
运行结果
| features | cluster_id | cluster_detail | | —- | —- | —- |
| -0.6264538 0.1836433 | 1 | 4.2752739140319505E-92 1.0 |
| -0.8356286 1.5952808 | 1 | 1.0260377730418951E-92 1.0 |
| 0.3295078 -0.8204684 | 1 | 1.097017336765683E-80 1.0 |
| 0.4874291 0.7383247 | 1 | 3.3021731323490106E-75 1.0 |
| 0.5757814 -0.3053884 | 1 | 3.163811360548103E-76 1.0 |
| 1.5117812 0.3898432 | 1 | 2.1018052308895397E-62 1.0 |
| -0.6212406 -2.2146999 | 1 | 6.772270268679667E-97 1.0 |
| 11.1249309 9.9550664 | 0 | 1.0 3.1567838012477056E-56 |
| 9.9838097 10.9438362 | 0 | 1.0 1.9024447346702016E-51 |
| 10.8212212 10.5939013 | 0 | 1.0 2.800973098729602E-56 |
| 10.9189774 10.7821363 | 0 | 1.0 1.7209132744891742E-57 |
| 10.0745650 8.0106483 | 0 | 1.0 2.8642696635133805E-43 |
| 10.6198257 9.9438713 | 0 | 1.0 5.773273991940741E-53 |
| 9.8442045 8.5292476 | 0 | 1.0 2.527312305092764E-43 |
| 9.5218499 10.4179416 | 0 | 1.0 1.7314580596765114E-46 |