Java 类名:com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp
Python 类名:GmmPredictStreamOp
功能介绍
基于GaussianMixture模型进行聚类预测。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df_data = pd.DataFrame([["-0.6264538 0.1836433"],["-0.8356286 1.5952808"],["0.3295078 -0.8204684"],["0.4874291 0.7383247"],["0.5757814 -0.3053884"],["1.5117812 0.3898432"],["-0.6212406 -2.2146999"],["11.1249309 9.9550664"],["9.9838097 10.9438362"],["10.8212212 10.5939013"],["10.9189774 10.7821363"],["10.0745650 8.0106483"],["10.6198257 9.9438713"],["9.8442045 8.5292476"],["9.5218499 10.4179416"],])data = BatchOperator.fromDataframe(df_data, schemaStr='features string')dataStream = StreamOperator.fromDataframe(df_data, schemaStr='features string')gmm = GmmTrainBatchOp() \.setVectorCol("features") \.setEpsilon(0.)model = gmm.linkFrom(data)predictor = GmmPredictBatchOp() \.setPredictionCol("cluster_id") \.setVectorCol("features") \.setPredictionDetailCol("cluster_detail")predictor.linkFrom(model, data).print()predictorStream = GmmPredictStreamOp(model) \.setPredictionCol("cluster_id") \.setVectorCol("features") \.setPredictionDetailCol("cluster_detail")predictorStream.linkFrom(dataStream).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.clustering.GmmPredictBatchOp;import com.alibaba.alink.operator.batch.clustering.GmmTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class GmmPredictStreamOpTest {@Testpublic void testGmmPredictStreamOp() throws Exception {List <Row> df_data = Arrays.asList(Row.of("-0.6264538 0.1836433"),Row.of("-0.8356286 1.5952808"),Row.of("0.3295078 -0.8204684"),Row.of("0.4874291 0.7383247"),Row.of("0.5757814 -0.3053884"),Row.of("1.5117812 0.3898432"),Row.of("-0.6212406 -2.2146999"),Row.of("11.1249309 9.9550664"),Row.of("9.9838097 10.9438362"),Row.of("10.8212212 10.5939013"),Row.of("10.9189774 10.7821363"),Row.of("10.0745650 8.0106483"),Row.of("10.6198257 9.9438713"),Row.of("9.8442045 8.5292476"),Row.of("9.5218499 10.4179416"));BatchOperator <?> data = new MemSourceBatchOp(df_data, "features string");StreamOperator <?> dataStream = new MemSourceStreamOp(df_data, "features string");BatchOperator <?> gmm = new GmmTrainBatchOp().setVectorCol("features").setEpsilon(0.);BatchOperator <?> model = gmm.linkFrom(data);BatchOperator <?> predictor = new GmmPredictBatchOp().setPredictionCol("cluster_id").setVectorCol("features").setPredictionDetailCol("cluster_detail");predictor.linkFrom(model, data).print();StreamOperator <?> predictorStream = new GmmPredictStreamOp(model).setPredictionCol("cluster_id").setVectorCol("features").setPredictionDetailCol("cluster_detail");predictorStream.linkFrom(dataStream).print();StreamOperator.execute();}}
运行结果
| features | cluster_id | cluster_detail | | —- | —- | —- |
| -0.6264538 0.1836433 | 1 | 4.2752739140319505E-92 1.0 |
| -0.8356286 1.5952808 | 1 | 1.0260377730418951E-92 1.0 |
| 0.3295078 -0.8204684 | 1 | 1.097017336765683E-80 1.0 |
| 0.4874291 0.7383247 | 1 | 3.3021731323490106E-75 1.0 |
| 0.5757814 -0.3053884 | 1 | 3.163811360548103E-76 1.0 |
| 1.5117812 0.3898432 | 1 | 2.1018052308895397E-62 1.0 |
| -0.6212406 -2.2146999 | 1 | 6.772270268679667E-97 1.0 |
| 11.1249309 9.9550664 | 0 | 1.0 3.1567838012477056E-56 |
| 9.9838097 10.9438362 | 0 | 1.0 1.9024447346702016E-51 |
| 10.8212212 10.5939013 | 0 | 1.0 2.800973098729602E-56 |
| 10.9189774 10.7821363 | 0 | 1.0 1.7209132744891742E-57 |
| 10.0745650 8.0106483 | 0 | 1.0 2.8642696635133805E-43 |
| 10.6198257 9.9438713 | 0 | 1.0 5.773273991940741E-53 |
| 9.8442045 8.5292476 | 0 | 1.0 2.527312305092764E-43 |
| 9.5218499 10.4179416 | 0 | 1.0 1.7314580596765114E-46 |
