Java 类名:com.alibaba.alink.operator.batch.similarity.StringNearestNeighborTrainBatchOp
Python 类名:StringNearestNeighborTrainBatchOp
功能介绍
本算法支持Levenshtein Distance,Longest Common SubString,String Subsequence Kernel,Cosine四种相似度精确计算方式,通过选择metric参数可计算不同的相似度。
该功能由训练和预测组成,支持计算1. 求最近邻topN 2. 求radius范围内的邻居。该功能由预测时候的topN和radius参数控制, 如果填写了topN,则输出最近邻,如果填写了radius,则输出radius范围内的邻居。
Levenshtein(Levenshtein Distance), 相似度=(1-距离)/length,length为两个字符长度的最大值,应选metric的参数为LEVENSHTEIN_SIM。
LCS(Longest Common SubString), 相似度=(1-距离)/length,length为两个字符长度的最大值,应选择metric的参数为LCS_SIM。
SSK(String Subsequence Kernel)支持相似度计算,应选择metric的参数为SSK。
Cosine(Cosine)支持相似度计算,应选择metric的参数为COSINE。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| idCol | id列名 | id列名 | String | ✓ | | |
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
| lambda | 匹配字符权重 | 匹配字符权重,SSK中使用 | Double | | | 0.5 |
| metric | 距离类型 | 用于计算的距离类型 | String | | “LEVENSHTEIN_SIM”, “LEVENSHTEIN”, “LCS_SIM”, “LCS”, “SSK”, “COSINE” | “LEVENSHTEIN_SIM” |
| windowSize | 窗口大小 | 窗口大小 | Integer | | [1, +inf) | 2 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[0, "abcde", "aabce"],
[1, "aacedw", "aabbed"],
[2, "cdefa", "bbcefa"],
[3, "bdefh", "ddeac"],
[4, "acedm", "aeefbc"]
])
inOp = BatchOperator.fromDataframe(df, schemaStr='id long, text1 string, text2 string')
train = StringNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("text1").setMetric("LEVENSHTEIN_SIM").linkFrom(inOp)
predict = StringNearestNeighborPredictBatchOp().setSelectedCol("text2").setTopN(3).linkFrom(train, inOp)
predict.print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.similarity.StringNearestNeighborPredictBatchOp;
import com.alibaba.alink.operator.batch.similarity.StringNearestNeighborTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class StringNearestNeighborTrainBatchOpTest {
@Test
public void testStringNearestNeighborTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(0, "abcde", "aabce"),
Row.of(1, "aacedw", "aabbed"),
Row.of(2, "cdefa", "bbcefa"),
Row.of(3, "bdefh", "ddeac"),
Row.of(4, "acedm", "aeefbc")
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, text1 string, text2 string");
BatchOperator <?> train = new StringNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("text1")
.setMetric("LEVENSHTEIN_SIM").linkFrom(inOp);
BatchOperator <?> predict = new StringNearestNeighborPredictBatchOp().setSelectedCol("text2").setTopN(3)
.linkFrom(train, inOp);
predict.print();
}
}
运行结果
| id | text1 | text2 | | —- | —- | —- |
| 0 | abcde | {“ID”:”[0,1,4]”,”METRIC”:”[0.6,0.5,0.19999999999999996]”} |
| 1 | aacedw | {“ID”:”[1,0,4]”,”METRIC”:”[0.5,0.33333333333333337,0.33333333333333337]”} |
| 2 | cdefa | {“ID”:”[2,3,1]”,”METRIC”:”[0.5,0.5,0.33333333333333337]”} |
| 3 | bdefh | {“ID”:”[2,3,4]”,”METRIC”:”[0.4,0.4,0.19999999999999996]”} |
| 4 | acedm | {“ID”:”[4,3,2]”,”METRIC”:”[0.33333333333333337,0.33333333333333337,0.33333333333333337]”} |