Java 类名:com.alibaba.alink.operator.batch.classification.NaiveBayesPredictBatchOp
Python 类名:NaiveBayesPredictBatchOp
功能介绍
使用朴素贝叶斯模型用于多分类任务的预测。
使用方式
该组件是预测组件,需要配合训练组件 NaiveBayesTrainBatchOp 使用。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
[1.0, 1.0, 0.0, 1.0, 1],
[1.0, 0.0, 1.0, 1.0, 1],
[1.0, 0.0, 1.0, 1.0, 1],
[0.0, 1.0, 1.0, 0.0, 0],
[0.0, 1.0, 1.0, 0.0, 0],
[0.0, 1.0, 1.0, 0.0, 0],
[0.0, 1.0, 1.0, 0.0, 0],
[1.0, 1.0, 1.0, 1.0, 1],
[0.0, 1.0, 1.0, 0.0, 0]
])
batchData = BatchOperator.fromDataframe(df_data, schemaStr='f0 double, f1 double, f2 double, f3 double, label int')
colnames = ["f0","f1","f2", "f3"]
ns = NaiveBayesTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
model = batchData.link(ns)
predictor = NaiveBayesPredictBatchOp().setPredictionCol("pred")
predictor.linkFrom(model, batchData).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.NaiveBayesPredictBatchOp;
import com.alibaba.alink.operator.batch.classification.NaiveBayesTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class NaiveBayesPredictBatchOpTest {
@Test
public void testNaiveBayesPredictBatchOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of(1.0, 1.0, 0.0, 1.0, 1),
Row.of(1.0, 0.0, 1.0, 1.0, 1),
Row.of(1.0, 0.0, 1.0, 1.0, 1),
Row.of(0.0, 1.0, 1.0, 0.0, 0),
Row.of(0.0, 1.0, 1.0, 0.0, 0),
Row.of(0.0, 1.0, 1.0, 0.0, 0),
Row.of(0.0, 1.0, 1.0, 0.0, 0),
Row.of(1.0, 1.0, 1.0, 1.0, 1),
Row.of(0.0, 1.0, 1.0, 0.0, 0)
);
BatchOperator <?> batchData = new MemSourceBatchOp(df_data,
"f0 double, f1 double, f2 double, f3 double, label int");
BatchOperator <?> ns = new NaiveBayesTrainBatchOp().setFeatureCols("f0", "f1", "f2", "f3").setLabelCol(
"label");
BatchOperator model = batchData.link(ns);
BatchOperator <?> predictor = new NaiveBayesPredictBatchOp().setPredictionCol("pred");
predictor.linkFrom(model, batchData).print();
}
}
运行结果
| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |
| 1.0 | 1.0 | 0.0 | 1.0 | 1 | 1 |
| 1.0 | 0.0 | 1.0 | 1.0 | 1 | 1 |
| 1.0 | 0.0 | 1.0 | 1.0 | 1 | 1 |
| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |
| 1.0 | 1.0 | 1.0 | 1.0 | 1 | 1 |
| 0.0 | 1.0 | 1.0 | 0.0 | 0 | 0 |