Java 类名:com.alibaba.alink.operator.batch.timeseries.DeepARTrainBatchOp
Python 类名:DeepARTrainBatchOp
功能介绍
使用 DeepAR 进行时间序列训练和预测。
使用方式
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
|
checkpointFilePath
| 保存 checkpoint 的路径
| 用于保存中间结果的路径,将作为 TensorFlow 中 Estimator
的 model_dir
传入,需要为所有 worker 都能访问到的目录
| String
| ✓
|
|
|
| timeCol | 时间戳列(TimeStamp) | 时间戳列(TimeStamp) | String | ✓ | 所选列类型为 [TIMESTAMP] | |
| batchSize | 数据批大小 | 数据批大小 | Integer | | | 128 |
| intraOpParallelism | Op 间并发度 | Op 间并发度 | Integer | | | 4 |
| learningRate | 学习率 | 学习率 | Double | | | 0.001 |
| numEpochs | epoch数 | epoch数 | Integer | | | 10 |
| numPSs | PS 角色数 | PS 角色的数量。值未设置时,如果 Worker 角色数也未设置,则为作业总并发度的 1/4(需要取整),否则为总并发度减去 Worker 角色数。 | Integer | | | null |
| numWorkers | Worker 角色数 | Worker 角色的数量。值未设置时,如果 PS 角色数也未设置,则为作业总并发度的 3/4(需要取整),否则为总并发度减去 PS 角色数。 | Integer | | | null |
| pythonEnv | Python 环境路径 | Python 环境路径,一般情况下不需要填写。如果是压缩文件,需要解压后得到一个目录,且目录名与压缩文件主文件名一致,可以使用 http://, https://, oss://, hdfs:// 等路径;如果是目录,那么只能使用本地路径,即 file://。 | String | | | “” |
| removeCheckpointBeforeTraining | 是否在训练前移除 checkpoint 相关文件 | 是否在训练前移除 checkpoint 相关文件用于重新训练,只会删除必要的文件 | Boolean | | | null |
| selectedCol | 计算列对应的列名 | 计算列对应的列名, 默认值是null | String | | | null |
| stride | horizon大小 | horizon大小 | Integer | | [1, +inf) | 12 |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
| window | 窗口大小 | 窗口大小 | Integer | | | 5 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
import time, datetime
import numpy as np
import pandas as pd
data = pd.DataFrame([
[0, datetime.datetime.fromisoformat('2021-11-01 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-02 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-03 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-04 00:00:00'), 100.0],
[0, datetime.datetime.fromisoformat('2021-11-05 00:00:00'), 100.0]
])
source = dataframeToOperator(data, schemaStr='id int, ts timestamp, series double', op_type='batch')
deepARTrainBatchOp = DeepARTrainBatchOp()\
.setTimeCol("ts")\
.setSelectedCol("series")\
.setNumEpochs(10)\
.setWindow(2)\
.setStride(1)
groupByBatchOp = GroupByBatchOp()\
.setGroupByPredicate("id")\
.setSelectClause("mtable_agg(ts, series) as mtable_agg_series")
deepARPredictBatchOp = DeepARPredictBatchOp()\
.setPredictNum(2)\
.setPredictionCol("pred")\
.setValueCol("mtable_agg_series")
deepARPredictBatchOp\
.linkFrom(
deepARTrainBatchOp.linkFrom(source),
groupByBatchOp.linkFrom(source)
)\
.print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.batch.sql.GroupByBatchOp;
import com.alibaba.alink.operator.batch.timeseries.DeepARPredictBatchOp;
import com.alibaba.alink.operator.batch.timeseries.DeepARTrainBatchOp;
import org.junit.Test;
import java.sql.Timestamp;
import java.util.Arrays;
import java.util.List;
public class DeepARTrainBatchOpTest {
@Test
public void testDeepARTrainBatchOp() throws Exception {
BatchOperator.setParallelism(1);
List <Row> data = Arrays.asList(
Row.of(0, Timestamp.valueOf("2021-11-01 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-02 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-03 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-04 00:00:00"), 100.0),
Row.of(0, Timestamp.valueOf("2021-11-05 00:00:00"), 100.0)
);
MemSourceBatchOp memSourceBatchOp = new MemSourceBatchOp(data, "id int, ts timestamp, series double");
DeepARTrainBatchOp deepARTrainBatchOp = new DeepARTrainBatchOp()
.setTimeCol("ts")
.setSelectedCol("series")
.setNumEpochs(10)
.setWindow(2)
.setStride(1);
GroupByBatchOp groupByBatchOp = new GroupByBatchOp()
.setGroupByPredicate("id")
.setSelectClause("mtable_agg(ts, series) as mtable_agg_series");
DeepARPredictBatchOp deepARPredictBatchOp = new DeepARPredictBatchOp()
.setPredictNum(2)
.setPredictionCol("pred")
.setValueCol("mtable_agg_series");
deepARPredictBatchOp
.linkFrom(
deepARTrainBatchOp.linkFrom(memSourceBatchOp),
groupByBatchOp.linkFrom(memSourceBatchOp)
)
.print();
}
}
运行结果
| id | mtable_agg_series | pred |
|——+—————————————————————————————————————————————————————————————————————————————————————————————————————————————+————————————————————————————————————————————————————————————————————————————-|
| 0 | {“data”:{“ts”:[“2021-11-01 00:00:00.0”,”2021-11-02 00:00:00.0”,”2021-11-03 00:00:00.0”,”2021-11-04 00:00:00.0”,”2021-11-05 00:00:00.0”],”series”:[100.0,100.0,100.0,100.0,100.0]},”schema”:”ts TIMESTAMP,series DOUBLE”} | {“data”:{“ts”:[“2021-11-06 00:00:00.0”,”2021-11-07 00:00:00.0”],”series”:[31.424224853515625,39.10265350341797]},”schema”:”ts TIMESTAMP,series DOUBLE”} |