Java 类名:com.alibaba.alink.operator.stream.feature.FeatureHasherStreamOp
Python 类名:FeatureHasherStreamOp

功能介绍

将多个特征组合成一个特征向量。

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | | |

| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | | |

| categoricalCols | 离散特征列名 | 离散特征列名 | String[] | | | |

| numFeatures | 向量维度 | 生成向量长度 | Integer | | | 262144 |

| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |

| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df = pd.DataFrame([
  5. [1.1, True, "2", "A"],
  6. [1.1, False, "2", "B"],
  7. [1.1, True, "1", "B"],
  8. [2.2, True, "1", "A"]
  9. ])
  10. inOp1 = BatchOperator.fromDataframe(df, schemaStr='double double, bool boolean, number int, str string')
  11. inOp2 = StreamOperator.fromDataframe(df, schemaStr='double double, bool boolean, number int, str string')
  12. hasher = FeatureHasherBatchOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200)
  13. hasher.linkFrom(inOp1).print()
  14. hasher = FeatureHasherStreamOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200)
  15. hasher.linkFrom(inOp2).print()
  16. StreamOperator.execute()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.feature.FeatureHasherBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import com.alibaba.alink.operator.stream.StreamOperator;
  6. import com.alibaba.alink.operator.stream.feature.FeatureHasherStreamOp;
  7. import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
  8. import org.junit.Test;
  9. import java.util.Arrays;
  10. import java.util.List;
  11. public class FeatureHasherStreamOpTest {
  12. @Test
  13. public void testFeatureHasherStreamOp() throws Exception {
  14. List <Row> df = Arrays.asList(
  15. Row.of(1.1, true, 2, "A"),
  16. Row.of(1.1, false, 2, "B"),
  17. Row.of(1.1, true, 1, "B"),
  18. Row.of(2.2, true, 1, "A")
  19. );
  20. BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "double double, bool boolean, number int, str string");
  21. StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "double double, bool boolean, number int, str string");
  22. BatchOperator <?> hasher = new FeatureHasherBatchOp().setSelectedCols("double", "bool", "number", "str")
  23. .setOutputCol("output").setNumFeatures(200);
  24. hasher.linkFrom(inOp1).print();
  25. StreamOperator <?> hasher2 = new FeatureHasherStreamOp().setSelectedCols("double", "bool", "number", "str")
  26. .setOutputCol("output").setNumFeatures(200);
  27. hasher2.linkFrom(inOp2).print();
  28. StreamOperator.execute();
  29. }
  30. }

运行结果

批预测结果

| f_string | f_long | f_double | | —- | —- | —- |

| a | 2 | 0 |

| b | 2 | 0 |

| c | 4 | 0 |

| d | 0 | 4 |

| a | 2 | 0 |

| b | 2 | 0 |

| c | 4 | 0 |

| d | 0 | 4 |

流预测结果

| f_string | f_long | f_double | | —- | —- | —- |

| c | 4 | 0 |

| a | 2 | 0 |

| d | 0 | 4 |

| d | 0 | 4 |

| b | 2 | 0 |

| c | 4 | 0 |

| a | 2 | 0 |

| b | 2 | 0 |