Java 类名:com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp
Python 类名:IndexToStringPredictBatchOp

功能介绍

基于 StringIndexer 模型,将一列整数映射为字符串。
在批式预测中,IndexToStringPredictBatchOp 接收两个BatchOp的输入,
第一个输入为模型(StringIndexer的getModelData()获取,或者直接输入StringIndexerTrainBatchOp),
第二个输入为要预测的数据。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelName 模型名字 模型名字 String
selectedCol 选中的列名 计算列对应的列名 String 所选列类型为 [STRING]
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCol 输出结果列 输出结果列列名,可选,默认null String null
reservedCols 算法保留列名 算法保留列 String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df_data = pd.DataFrame([
  5. ["football"],
  6. ["football"],
  7. ["football"],
  8. ["basketball"],
  9. ["basketball"],
  10. ["tennis"],
  11. ])
  12. train_data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string')
  13. stringIndexer = StringIndexer()\
  14. .setModelName("string_indexer_model")\
  15. .setSelectedCol("f0")\
  16. .setOutputCol("f0_indexed")\
  17. .setStringOrderType("frequency_asc").fit(train_data)
  18. indexed = stringIndexer.transform(train_data)
  19. indexToStrings = IndexToStringPredictBatchOp()\
  20. .setSelectedCol("f0_indexed")\
  21. .setOutputCol("f0_indxed_unindexed")
  22. indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import com.alibaba.alink.pipeline.dataproc.StringIndexer;
  6. import com.alibaba.alink.pipeline.dataproc.StringIndexerModel;
  7. import org.junit.Test;
  8. import java.util.Arrays;
  9. import java.util.List;
  10. public class IndexToStringPredictStreamOpTest {
  11. @Test
  12. public void testIndexToStringPredictStreamOp() throws Exception {
  13. List <Row> df_data = Arrays.asList(
  14. Row.of("football"),
  15. Row.of("football"),
  16. Row.of("football"),
  17. Row.of("basketball"),
  18. Row.of("basketball"),
  19. Row.of("tennis")
  20. );
  21. BatchOperator <?> train_data = new MemSourceBatchOp(df_data, "f0 string");
  22. StringIndexerModel stringIndexer = new StringIndexer()
  23. .setModelName("string_indexer_model")
  24. .setSelectedCol("f0")
  25. .setOutputCol("f0_indexed")
  26. .setStringOrderType("frequency_asc").fit(train_data);
  27. BatchOperator indexed = stringIndexer.transform(train_data);
  28. BatchOperator <?> indexToStrings = new IndexToStringPredictBatchOp()
  29. .setSelectedCol("f0_indexed")
  30. .setOutputCol("f0_indxed_unindexed");
  31. indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print();
  32. }
  33. }

运行结果

| f0 | f0_indexed | f0_indxed_unindexed | | —- | —- | —- |

| football | 2 | football |

| football | 2 | football |

| football | 2 | football |

| basketball | 1 | basketball |

| basketball | 1 | basketball |

| tennis | 0 | tennis |