Java 类名:com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp
Python 类名:IndexToStringPredictBatchOp
功能介绍
基于 StringIndexer 模型,将一列整数映射为字符串。
在批式预测中,IndexToStringPredictBatchOp 接收两个BatchOp的输入,
第一个输入为模型(StringIndexer的getModelData()获取,或者直接输入StringIndexerTrainBatchOp),
第二个输入为要预测的数据。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| modelName | 模型名字 | 模型名字 | String | ✓ | ||
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df_data = pd.DataFrame([["football"],["football"],["football"],["basketball"],["basketball"],["tennis"],])train_data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string')stringIndexer = StringIndexer()\.setModelName("string_indexer_model")\.setSelectedCol("f0")\.setOutputCol("f0_indexed")\.setStringOrderType("frequency_asc").fit(train_data)indexed = stringIndexer.transform(train_data)indexToStrings = IndexToStringPredictBatchOp()\.setSelectedCol("f0_indexed")\.setOutputCol("f0_indxed_unindexed")indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.pipeline.dataproc.StringIndexer;import com.alibaba.alink.pipeline.dataproc.StringIndexerModel;import org.junit.Test;import java.util.Arrays;import java.util.List;public class IndexToStringPredictStreamOpTest {@Testpublic void testIndexToStringPredictStreamOp() throws Exception {List <Row> df_data = Arrays.asList(Row.of("football"),Row.of("football"),Row.of("football"),Row.of("basketball"),Row.of("basketball"),Row.of("tennis"));BatchOperator <?> train_data = new MemSourceBatchOp(df_data, "f0 string");StringIndexerModel stringIndexer = new StringIndexer().setModelName("string_indexer_model").setSelectedCol("f0").setOutputCol("f0_indexed").setStringOrderType("frequency_asc").fit(train_data);BatchOperator indexed = stringIndexer.transform(train_data);BatchOperator <?> indexToStrings = new IndexToStringPredictBatchOp().setSelectedCol("f0_indexed").setOutputCol("f0_indxed_unindexed");indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print();}}
运行结果
| f0 | f0_indexed | f0_indxed_unindexed | | —- | —- | —- |
| football | 2 | football |
| football | 2 | football |
| football | 2 | football |
| basketball | 1 | basketball |
| basketball | 1 | basketball |
| tennis | 0 | tennis |
