Java 类名:com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp
Python 类名:IndexToStringPredictBatchOp
功能介绍
基于 StringIndexer 模型,将一列整数映射为字符串。
在批式预测中,IndexToStringPredictBatchOp 接收两个BatchOp的输入,
第一个输入为模型(StringIndexer的getModelData()获取,或者直接输入StringIndexerTrainBatchOp),
第二个输入为要预测的数据。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelName | 模型名字 | 模型名字 | String | ✓ | ||
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
["football"],
["football"],
["football"],
["basketball"],
["basketball"],
["tennis"],
])
train_data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string')
stringIndexer = StringIndexer()\
.setModelName("string_indexer_model")\
.setSelectedCol("f0")\
.setOutputCol("f0_indexed")\
.setStringOrderType("frequency_asc").fit(train_data)
indexed = stringIndexer.transform(train_data)
indexToStrings = IndexToStringPredictBatchOp()\
.setSelectedCol("f0_indexed")\
.setOutputCol("f0_indxed_unindexed")
indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.IndexToStringPredictBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.dataproc.StringIndexer;
import com.alibaba.alink.pipeline.dataproc.StringIndexerModel;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class IndexToStringPredictStreamOpTest {
@Test
public void testIndexToStringPredictStreamOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of("football"),
Row.of("football"),
Row.of("football"),
Row.of("basketball"),
Row.of("basketball"),
Row.of("tennis")
);
BatchOperator <?> train_data = new MemSourceBatchOp(df_data, "f0 string");
StringIndexerModel stringIndexer = new StringIndexer()
.setModelName("string_indexer_model")
.setSelectedCol("f0")
.setOutputCol("f0_indexed")
.setStringOrderType("frequency_asc").fit(train_data);
BatchOperator indexed = stringIndexer.transform(train_data);
BatchOperator <?> indexToStrings = new IndexToStringPredictBatchOp()
.setSelectedCol("f0_indexed")
.setOutputCol("f0_indxed_unindexed");
indexToStrings.linkFrom(stringIndexer.getModelData(), indexed).print();
}
}
运行结果
| f0 | f0_indexed | f0_indxed_unindexed | | —- | —- | —- |
| football | 2 | football |
| football | 2 | football |
| football | 2 | football |
| basketball | 1 | basketball |
| basketball | 1 | basketball |
| tennis | 0 | tennis |