Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScalerModel
Python 类名:VectorStandardScalerModel

功能介绍

  • Vector标准化是对Vector数据进行按正态化处理的组件
  • 该组件为Vector标准化模型,可用于对数据做标准化处理

    参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCol 输出结果列 输出结果列列名,可选,默认null String null
overwriteSink 是否覆写已有数据 是否覆写已有数据 Boolean false
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df = pd.DataFrame([
  5. ["a", "10.0, 100"],
  6. ["b", "-2.5, 9"],
  7. ["c", "100.2, 1"],
  8. ["d", "-99.9, 100"],
  9. ["a", "1.4, 1"],
  10. ["b", "-2.2, 9"],
  11. ["c", "100.9, 1"]
  12. ])
  13. data = BatchOperator.fromDataframe(df, schemaStr="col string, vector string")
  14. model = VectorStandardScaler().setSelectedCol("vector").fit(data)
  15. model.transform(data).collectToDataframe()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  4. import com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScaler;
  5. import com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScalerModel;
  6. import org.junit.Test;
  7. import java.util.Arrays;
  8. import java.util.List;
  9. public class VectorStandardScalerModelTest {
  10. @Test
  11. public void testVectorStandardScalerModel() throws Exception {
  12. List <Row> df = Arrays.asList(
  13. Row.of("a", "10.0, 100"),
  14. Row.of("b", "-2.5, 9"),
  15. Row.of("c", "100.2, 1"),
  16. Row.of("d", "-99.9, 100"),
  17. Row.of("a", "1.4, 1"),
  18. Row.of("b", "-2.2, 9"),
  19. Row.of("c", "100.9, 1")
  20. );
  21. BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vector string");
  22. VectorStandardScalerModel model = new VectorStandardScaler().setSelectedCol("vector").fit(data);
  23. model.transform(data).print();
  24. }
  25. }

运行结果

| col1 | vec | | —- | —- |

| a | -0.07835182408093559,1.4595814453461897 |

| c | 1.2269606224811418,-0.6520885789229323 |

| b | -0.2549018445693762,-0.4814485769617911 |

| a | -0.20280511721213143,-0.6520885789229323 |

| c | 1.237090541689495,-0.6520885789229323 |

| b | -0.25924323851581327,-0.4814485769617911 |

| d | -1.6687491397923802,1.4595814453461897 |