Java 类名:com.alibaba.alink.operator.batch.outlier.IForestOutlier4GroupedDataBatchOp
Python 类名:IForestOutlier4GroupedDataBatchOp

功能介绍

iForest 可以识别数据中异常点,在异常检测领域有比较好的效果。算法使用 sub-sampling 方法,降低了算法的计算复杂度。

文献或出处

  1. Isolation Forest

    参数说明

    | 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| inputMTableCol | Not available! | Not available! | String | ✓ | | |

| outputMTableCol | Not available! | Not available! | String | ✓ | | |

| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |

| featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |

| maxOutlierNumPerGroup | 每组最大异常点数目 | 每组最大异常点数目 | Integer | | | |

| maxOutlierRatio | 最大异常点比例 | 算法检测异常点的最大比例 | Double | | | |

| numTrees | 模型中树的棵数 | 模型中树的棵数 | Integer | | | 100 |

| outlierThreshold | 异常评分阈值 | 只有评分大于该阈值才会被认为是异常点 | Double | | | |

| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |

| subsamplingSize | 每棵树的样本采样行数 | 每棵树的样本采样行数,默认 256 ,最小 2 ,最大 100000 . | Integer | | [1, 100000] | 256 |

| tensorCol | tensor列 | tensor列 | String | | 所选列类型为 [BOOL_TENSOR, BYTE_TENSOR, DOUBLE_TENSOR, FLOAT_TENSOR, INT_TENSOR, LONG_TENSOR, STRING, STRING_TENSOR, TENSOR, UBYTE_TENSOR] | null |

| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |

| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |

代码示例

Python 代码

  1. import pandas as pd
  2. df = pd.DataFrame([
  3. [1, 1, 10.0],
  4. [1, 2, 11.0],
  5. [1, 3, 12.0],
  6. [1, 4, 13.0],
  7. [1, 5, 14.0],
  8. [1, 6, 15.0],
  9. [1, 7, 16.0],
  10. [1, 8, 17.0],
  11. [1, 9, 18.0],
  12. [1, 10, 19.0]
  13. ])
  14. dataOp = BatchOperator.fromDataframe(
  15. df, schemaStr='group_id int, id int, val double')
  16. outlierOp = dataOp.link(
  17. GroupByBatchOp()
  18. .setGroupByPredicate("group_id")
  19. .setSelectClause("mtable_agg(id, val) as data")
  20. ).link(
  21. IForestOutlier4GroupedDataBatchOp()
  22. .setInputMTableCol("data")
  23. .setOutputMTableCol("pred")
  24. .setFeatureCols(["val"])
  25. .setPredictionCol("detect_pred")
  26. )
  27. outlierOp.print()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.outlier.IForestOutlier4GroupedDataBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import com.alibaba.alink.operator.batch.sql.GroupByBatchOp;
  6. import org.junit.Test;
  7. import java.util.Arrays;
  8. import java.util.List;
  9. public class IForestOutlier4GroupedDataBatchOpTest {
  10. @Test
  11. public void test() throws Exception {
  12. List <Row> mTableData = Arrays.asList(
  13. Row.of(1, 1, 10.0),
  14. Row.of(1, 2, 11.0),
  15. Row.of(1, 3, 12.0),
  16. Row.of(1, 4, 13.0),
  17. Row.of(1, 5, 14.0),
  18. Row.of(1, 6, 15.0),
  19. Row.of(1, 7, 16.0),
  20. Row.of(1, 8, 17.0),
  21. Row.of(1, 9, 18.0),
  22. Row.of(1, 10, 19.0)
  23. );
  24. MemSourceBatchOp dataOp = new MemSourceBatchOp(mTableData, new String[] {"group_id", "id", "val"});
  25. BatchOperator <?> outlierOp = dataOp.link(
  26. new GroupByBatchOp()
  27. .setGroupByPredicate("group_id")
  28. .setSelectClause("group_id, mtable_agg(id, val) as data")
  29. ).link(
  30. new IForestOutlier4GroupedDataBatchOp()
  31. .setInputMTableCol("data")
  32. .setOutputMTableCol("pred")
  33. .setFeatureCols("val")
  34. .setPredictionCol("detect_pred")
  35. );
  36. outlierOp.print();
  37. }
  38. }

运行结果

| group_id | data | pred | | —- | —- | —- |

| 1 | MTable(10,2)(id,val) | MTable(10,3)(id,val,detect_pred) |

| 1 | 10.0000 | 1 |

| 2 | 11.0000 | 2 |

| 3 | 12.0000 | 3 |

| 4 | 13.0000 | 4 |

| 5 | 14.0000 | 5 |