Java 类名:com.alibaba.alink.operator.stream.recommendation.AlsSimilarUsersRecommStreamOp
Python 类名:AlsSimilarUsersRecommStreamOp

功能介绍

使用ALS (Alternating Lease Square)训练的模型对相似的user的进行实时推荐。这里的ALS模型可以是隐式模型,也可以是显式模型,输出格式是MTable。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
recommCol 推荐结果列名 推荐结果列名 String
userCol User列列名 User列列名 String
initRecommCol 初始推荐列列名 初始推荐列列名 String 所选列类型为 [M_TABLE] null
k 推荐TOP数量 推荐TOP数量 Integer 10
reservedCols 算法保留列名 算法保留列名 String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 扫描模型路径的时间间隔,单位秒。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s)。 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s)。 String null

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df_data = pd.DataFrame([
  5. [1, 1, 0.6],
  6. [2, 2, 0.8],
  7. [2, 3, 0.6],
  8. [4, 1, 0.6],
  9. [4, 2, 0.3],
  10. [4, 3, 0.4],
  11. ])
  12. data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')
  13. sdata = StreamOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')
  14. als = AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating") \
  15. .setNumIter(10).setRank(10).setLambda(0.01)
  16. model = als.linkFrom(data)
  17. predictor = AlsSimilarUsersRecommStreamOp(model) \
  18. .setUserCol("user").setRecommCol("rec").setK(1).setReservedCols(["user"])
  19. predictor.linkFrom(sdata).print();
  20. StreamOperator.execute()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.recommendation.AlsTrainBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import com.alibaba.alink.operator.stream.StreamOperator;
  6. import com.alibaba.alink.operator.stream.recommendation.AlsSimilarUsersRecommStreamOp;
  7. import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
  8. import org.junit.Test;
  9. import java.util.Arrays;
  10. import java.util.List;
  11. public class AlsSimilarUsersRecommStreamOpTest {
  12. @Test
  13. public void testAlsSimilarUsersRecommStreamOp() throws Exception {
  14. List <Row> df_data = Arrays.asList(
  15. Row.of(1, 1, 0.6),
  16. Row.of(2, 2, 0.8),
  17. Row.of(2, 3, 0.6),
  18. Row.of(4, 1, 0.6),
  19. Row.of(4, 2, 0.3),
  20. Row.of(4, 3, 0.4)
  21. );
  22. BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");
  23. StreamOperator <?> sdata = new MemSourceStreamOp(df_data, "user int, item int, rating double");
  24. BatchOperator <?> als = new AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating")
  25. .setNumIter(10).setRank(10).setLambda(0.01);
  26. BatchOperator model = als.linkFrom(data);
  27. StreamOperator <?> predictor = new AlsSimilarUsersRecommStreamOp(model)
  28. .setUserCol("user").setRecommCol("rec").setK(1).setReservedCols("user");
  29. predictor.linkFrom(sdata).print();
  30. StreamOperator.execute();
  31. }
  32. }

运行结果

user rec
1 {“object”:”[4]”,”score”:”[0.2515771985054016]”}
2 {“object”:”[1]”,”score”:”[0.17212671041488647]”}
2 {“object”:”[1]”,”score”:”[0.17212671041488647]”}
4 {“object”:”[1]”,”score”:”[0.2515771985054016]”}
4 {“object”:”[1]”,”score”:”[0.2515771985054016]”}
4 {“object”:”[1]”,”score”:”[0.2515771985054016]”}