Java 类名:com.alibaba.alink.operator.stream.dataproc.MultiStringIndexerPredictStreamOp
Python 类名:MultiStringIndexerPredictStreamOp
功能介绍
多列字符串转换组件,输入的模型数据来自 MultiStringIndexerTrainBatchOp 组件的输出,训练的时候指定多个列,每个列单独编码。
这个组件为流式预测组件,预测时需要指定列名,列名必须与训练时列名相同。如果转换时指定了训练时不存在的列名,会报异常。
支持按照一定的次序编码。如随机、出现频次生序,出现频次降序、字符串生序、字符串降序5种方式。
设置 setStringOrderType 参数时分别对应 random frequency_asc frequency_desc alphabet_asc alphabet_desc。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
| handleInvalid | 未知token处理策略 | 未知token处理策略。”keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | | “KEEP”, “ERROR”, “SKIP” | “KEEP” |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
["football", "apple"],
["football", "banana"],
["football", "banana"],
["basketball", "orange"],
["basketball", "grape"],
["tennis", "grape"],
])
data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string,f1 string')
stream_data = StreamOperator.fromDataframe(df_data, schemaStr='f0 string,f1 string')
stringindexer = MultiStringIndexerTrainBatchOp() \
.setSelectedCols(["f0", "f1"]) \
.setStringOrderType("frequency_asc")
model = stringindexer.linkFrom(data)
predictor = MultiStringIndexerPredictStreamOp(model)\
.setSelectedCols(["f0", "f1"])\
.setOutputCols(["f0_indexed", "f1_indexed"])
predictor.linkFrom(stream_data).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.dataproc.MultiStringIndexerPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class MultiStringIndexerPredictStreamOpTest {
@Test
public void testMultiStringIndexerPredictStreamOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of("football", "apple"),
Row.of("football", "banana"),
Row.of("football", "banana"),
Row.of("basketball", "orange"),
Row.of("basketball", "grape"),
Row.of("tennis", "grape")
);
BatchOperator <?> data = new MemSourceBatchOp(df_data, "f0 string,f1 string");
StreamOperator <?> stream_data = new MemSourceStreamOp(df_data, "f0 string,f1 string");
BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp()
.setSelectedCols("f0", "f1")
.setStringOrderType("frequency_asc");
BatchOperator model = stringindexer.linkFrom(data);
StreamOperator <?> predictor = new MultiStringIndexerPredictStreamOp(model)
.setSelectedCols("f0", "f1")
.setOutputCols("f0_indexed", "f1_indexed");
predictor.linkFrom(stream_data).print();
StreamOperator.execute();
}
}
运行结果
| f0 | f1 | f0_indexed | f1_indexed | | —- | —- | —- | —- |
| basketball | orange | 1 | 0 |
| football | apple | 2 | 1 |
| tennis | grape | 0 | 3 |
| football | banana | 2 | 2 |
| basketball | grape | 1 | 3 |
| football | banana | 2 | 2 |