Java 类名:com.alibaba.alink.operator.batch.dataproc.WeightSampleBatchOp
Python 类名:WeightSampleBatchOp
功能介绍
- 本算子是按照数据点的权重对数据按照比例进行加权采样,权重越大的数据点被采样的可能性越大。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- | | ratio | 采样比例 | 采样率,范围为[0, 1] | Double | ✓ | [0.0, 1.0] | | | weightCol | 权重列名 | 权重列对应的列名 | String | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | | | withReplacement | 是否放回 | 是否有放回的采样,默认不放回 | Boolean | | | false |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["a", 1.3, 1.1],["b", 2.5, 0.9],["c", 100.2, -0.01],["d", 99.9, 100.9],["e", 1.4, 1.1],["f", 2.2, 0.9],["g", 100.9, -0.01],["j", 99.5, 100.9],])# batch sourceinOp = BatchOperator.fromDataframe(df, schemaStr='id string, weight double, value double')sampleOp = WeightSampleBatchOp() \.setWeightCol("weight") \.setRatio(0.5) \.setWithReplacement(False)inOp.link(sampleOp).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.WeightSampleBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class WeightSampleBatchOpTest {@Testpublic void testWeightSampleBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("a", 1.3, 1.1),Row.of("b", 2.5, 0.9),Row.of("c", 100.2, -0.01),Row.of("d", 99.9, 100.9),Row.of("e", 1.4, 1.1),Row.of("f", 2.2, 0.9),Row.of("g", 100.9, -0.01),Row.of("j", 99.5, 100.9));BatchOperator <?> inOp = new MemSourceBatchOp(df, "id string, weight double, value double");BatchOperator <?> sampleOp = new WeightSampleBatchOp().setWeightCol("weight").setRatio(0.5).setWithReplacement(false);inOp.link(sampleOp).print();}}
结果
| id | weight | value | | —- | —- | —- |
| g | 100.9000 | -0.0100 |
| d | 99.9000 | 100.9000 |
| c | 100.2000 | -0.0100 |
| j | 99.5000 | 100.9000 |
