Java 类名:com.alibaba.alink.operator.batch.dataproc.format.CsvToColumnsBatchOp
Python 类名:CsvToColumnsBatchOp
功能介绍
将数据格式从 Csv 转成 Columns
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
csvCol | CSV列名 | CSV列的列名 | String | ✓ | 所选列类型为 [STRING] | |
schemaStr | Schema | Schema。格式为”colname coltype[, colname2, coltype2[, …]]”,例如”f0 string, f1 bigint, f2 double” | String | ✓ | ||
csvFieldDelimiter | 字段分隔符 | 字段分隔符 | String | “,” | ||
handleInvalid | 解析异常处理策略 | 解析异常处理策略,可选为ERROR(抛出异常)或者SKIP(输出NULL) | String | “ERROR”, “SKIP” | “ERROR” | |
quoteChar | 引号字符 | 引号字符 | Character | “”” | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
['1', '{"f0":"1.0","f1":"2.0"}', '$3$0:1.0 1:2.0', 'f0:1.0,f1:2.0', '1.0,2.0', 1.0, 2.0],
['2', '{"f0":"4.0","f1":"8.0"}', '$3$0:4.0 1:8.0', 'f0:4.0,f1:8.0', '4.0,8.0', 4.0, 8.0]])
data = BatchOperator.fromDataframe(df, schemaStr="row string, json string, vec string, kv string, csv string, f0 double, f1 double")
op = CsvToColumnsBatchOp()\
.setCsvCol("csv")\
.setSchemaStr("f0 double, f1 double")\
.setReservedCols(["row"])\
.linkFrom(data)
op.print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.format.CsvToColumnsBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class CsvToColumnsBatchOpTest {
@Test
public void testCsvToColumnsBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("1", "{\"f0\":\"1.0\",\"f1\":\"2.0\"}", "$3$0:1.0 1:2.0", "f0:1.0,f1:2.0", "1.0,2.0", 1.0, 2.0),
Row.of("2", "{\"f0\":\"4.0\",\"f1\":\"8.0\"}", "$3$0:4.0 1:8.0", "f0:4.0,f1:8.0", "4.0,8.0", 4.0, 8.0)
);
BatchOperator <?> data = new MemSourceBatchOp(df,
"row string, json string, vec string, kv string, csv string, f0 double, f1 double");
BatchOperator <?> op = new CsvToColumnsBatchOp()
.setCsvCol("csv")
.setSchemaStr("f0 double, f1 double")
.setReservedCols("row")
.linkFrom(data);
op.print();
}
}
运行结果
| row | f0 | f1 | | —- | —- | —- |
| 1 | 1.0 | 2.0 |
| 2 | 4.0 | 8.0 |