Java 类名:com.alibaba.alink.operator.batch.recommendation.AlsItemsPerUserRecommBatchOp
Python 类名:AlsItemsPerUserRecommBatchOp

功能介绍

使用ALS (Alternating Lease Square)训练的模型为 user 推荐 items。这里的ALS模型可以是隐式模型,也可以是显式模型,输出格式是MTable。

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| recommCol | 推荐结果列名 | 推荐结果列名 | String | ✓ | | |

| userCol | User列列名 | User列列名 | String | ✓ | | |

| excludeKnown | 排除已知的关联 | 推荐结果中是否排除训练数据中已知的关联 | Boolean | | | false |

| initRecommCol | 初始推荐列列名 | 初始推荐列列名 | String | | 所选列类型为 [M_TABLE] | null |

| k | 推荐TOP数量 | 推荐TOP数量 | Integer | | | 10 |

| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |

| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df_data = pd.DataFrame([
  5. [1, 1, 0.6],
  6. [2, 2, 0.8],
  7. [2, 3, 0.6],
  8. [4, 1, 0.6],
  9. [4, 2, 0.3],
  10. [4, 3, 0.4],
  11. ])
  12. data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')
  13. als = AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating") \
  14. .setNumIter(10).setRank(10).setLambda(0.01)
  15. model = als.linkFrom(data)
  16. predictor = AlsItemsPerUserRecommBatchOp() \
  17. .setUserCol("user").setRecommCol("rec").setK(1).setReservedCols(["user"])
  18. predictor.linkFrom(model, data).print();

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.recommendation.AlsItemsPerUserRecommBatchOp;
  4. import com.alibaba.alink.operator.batch.recommendation.AlsTrainBatchOp;
  5. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  6. import org.junit.Test;
  7. import java.util.Arrays;
  8. import java.util.List;
  9. public class AlsItemsPerUserRecommBatchOpTest {
  10. @Test
  11. public void testAlsItemsPerUserRecommBatchOp() throws Exception {
  12. List <Row> df_data = Arrays.asList(
  13. Row.of(1, 1, 0.6),
  14. Row.of(2, 2, 0.8),
  15. Row.of(2, 3, 0.6),
  16. Row.of(4, 1, 0.6),
  17. Row.of(4, 2, 0.3),
  18. Row.of(4, 3, 0.4)
  19. );
  20. BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");
  21. BatchOperator <?> als = new AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating")
  22. .setNumIter(10).setRank(10).setLambda(0.01);
  23. BatchOperator model = als.linkFrom(data);
  24. BatchOperator <?> predictor = new AlsItemsPerUserRecommBatchOp()
  25. .setUserCol("user").setRecommCol("rec").setK(1).setReservedCols("user");
  26. predictor.linkFrom(model, data).print();
  27. }
  28. }

运行结果

| user | rec | | —- | —- |

| 1 | {“object”:”[1]”,”rate”:”[0.5796224474906921]”} |

| 2 | {“object”:”[2]”,”rate”:”[0.7668506503105164]”} |

| 2 | {“object”:”[2]”,”rate”:”[0.7668506503105164]”} |

| 4 | {“object”:”[1]”,”rate”:”[0.5744813084602356]”} |

| 4 | {“object”:”[1]”,”rate”:”[0.5744813084602356]”} |

| 4 | {“object”:”[1]”,”rate”:”[0.5744813084602356]”} |