Java 类名:com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerPredictBatchOp
Python 类名:MultiStringIndexerPredictBatchOp
功能介绍
多列字符串转换组件,输入的模型数据来自 MultiStringIndexerTrainBatchOp 组件的输出,训练的时候指定多个列,每个列单独编码。
这个组件为批式预测组件,预测时需要指定列名,列名必须与训练时列名相同。如果转换时指定了训练时不存在的列名,会报异常。
支持按照一定的次序编码。如随机、出现频次生序,出现频次降序、字符串生序、字符串降序5种方式。
设置 setStringOrderType 参数时分别对应 random frequency_asc frequency_desc alphabet_asc alphabet_desc。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
| handleInvalid | 未知token处理策略 | 未知token处理策略。”keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["football", "apple"],["football", "banana"],["football", "banana"],["basketball", "orange"],["basketball", "grape"],["tennis", "grape"],])data = BatchOperator.fromDataframe(df, schemaStr='f0 string,f1 string')stringindexer = MultiStringIndexerTrainBatchOp() \.setSelectedCols(["f0", "f1"]) \.setStringOrderType("frequency_asc")predictor = MultiStringIndexerPredictBatchOp().setSelectedCols(["f0", "f1"]).setOutputCols(["f0_indexed", "f1_indexed"])model = stringindexer.linkFrom(data)predictor.linkFrom(model, data).print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerPredictBatchOp;import com.alibaba.alink.operator.batch.dataproc.MultiStringIndexerTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class MultiStringIndexerPredictBatchOpTest {@Testpublic void testMultiStringIndexerPredictBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of("football", "apple"),Row.of("football", "banana"),Row.of("football", "banana"),Row.of("basketball", "orange"),Row.of("basketball", "grape"),Row.of("tennis", "grape"));BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string");BatchOperator <?> stringindexer = new MultiStringIndexerTrainBatchOp().setSelectedCols("f0", "f1").setStringOrderType("frequency_asc");BatchOperator <?> predictor = new MultiStringIndexerPredictBatchOp().setSelectedCols("f0", "f1").setOutputCols("f0_indexed", "f1_indexed");BatchOperator model = stringindexer.linkFrom(data);predictor.linkFrom(model, data).print();}}
运行结果
| f0 | f1 | f0_indexed | f1_indexed | | —- | —- | —- | —- |
| basketball | orange | 1 | 0 |
| football | apple | 2 | 1 |
| tennis | grape | 0 | 3 |
| football | banana | 2 | 2 |
| basketball | grape | 1 | 3 |
| football | banana | 2 | 2 |
