Java 类名:com.alibaba.alink.pipeline.dataproc.StandardScalerModel
Python 类名:StandardScalerModel
功能介绍
标准化是对数据进行按正态化处理的组件
标准化模型,用于数据的标准化的处理过程
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
| overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([["a", 10.0, 100],["b", -2.5, 9],["c", 100.2, 1],["d", -99.9, 100],["a", 1.4, 1],["b", -2.2, 9],["c", 100.9, 1]])colnames = ["col1", "col2", "col3"]selectedColNames = ["col2", "col3"]inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')sinOp = StreamOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 long')model = StandardScaler()\.setSelectedCols(selectedColNames)\.fit(inOp)model.transform(inOp).print()model.transform(sinOp).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import com.alibaba.alink.pipeline.dataproc.StandardScaler;import com.alibaba.alink.pipeline.dataproc.StandardScalerModel;import org.junit.Test;import java.util.Arrays;import java.util.List;public class StandardScalerModelTest {@Testpublic void testStandardScalerModel() throws Exception {List <Row> df = Arrays.asList(Row.of("a", 10.0, 100),Row.of("b", -2.5, 9),Row.of("c", 100.2, 1),Row.of("d", -99.9, 100),Row.of("a", 1.4, 1),Row.of("b", -2.2, 9),Row.of("c", 100.9, 1));String[] selectedColNames = new String[] {"col2", "col3"};BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int");StreamOperator <?> sinOp = new MemSourceStreamOp(df, "col1 string, col2 double, col3 int");StandardScalerModel model = new StandardScaler().setSelectedCols(selectedColNames).fit(inOp);model.transform(inOp).print();model.transform(sinOp).print();StreamOperator.execute();}}
运行结果
| col1 | col2 | col3 | | —- | —- | —- |
| a | -0.0784 | 1.4596 |
| b | -0.2592 | -0.4814 |
| c | 1.2270 | -0.6521 |
| d | -1.6687 | 1.4596 |
| a | -0.2028 | -0.6521 |
| b | -0.2549 | -0.4814 |
| c | 1.2371 | -0.6521 |
| col1 | col2 | col3 |
|
| —— |
|---|
| c | 1.2371 | -0.6521 |
| b | -0.2592 | -0.4814 |
| c | 1.2270 | -0.6521 |
| b | -0.2549 | -0.4814 |
| a | -0.0784 | 1.4596 |
| a | -0.2028 | -0.6521 |
| d | -1.6687 | 1.4596 |
