Java 类名:com.alibaba.alink.operator.batch.statistics.VectorCorrelationBatchOp
Python 类名:VectorCorrelationBatchOp

功能介绍

针对vector数据,计算相关系数

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |

| method | 方法 | 方法:包含”PEARSON”和”SPEARMAN”两种,PEARSON。 | String | | “PEARSON”, “SPEARMAN” | “PEARSON” |

代码示例

以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!

Python 代码

无python接口

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  4. import com.alibaba.alink.operator.batch.statistics.VectorCorrelationBatchOp;
  5. import org.junit.Test;
  6. import java.util.Arrays;
  7. public class VectorCorrelationBatchOpTest {
  8. @Test
  9. public void testVectorCorrelationBatchOp() throws Exception {
  10. Row[] testArray = new Row[] {
  11. Row.of(7, "0.0 0.0 18.0 1.0", 1.0),
  12. Row.of(8, "0.0 1.0 12.0 0.0", 0.0),
  13. Row.of(9, "1.0 0.0 15.0 0.1", 0.0),
  14. };
  15. String[] colNames = new String[] {"id", "features", "clicked"};
  16. MemSourceBatchOp source = new MemSourceBatchOp(Arrays.asList(testArray), colNames);
  17. VectorCorrelationBatchOp test = new VectorCorrelationBatchOp()
  18. .setSelectedCol("features");
  19. test.linkFrom(source);
  20. test.lazyPrintCorrelation();
  21. BatchOperator.execute();
  22. }
  23. }

运行结果

Correlation:

| colName | 0 | 1 | 2 | 3 | | —- | —- | —- | —- | —- |

| 0 | 1 | -0.5 | 0 | -0.4193 |

| 1 | -0.5 | 1 | -0.866 | -0.5766 |

| 2 | 0 | -0.866 | 1 | 0.9078 |

| 3 | -0.4193 | -0.5766 | 0.9078 | 1 |