Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerPredictBatchOp
Python 类名:VectorMaxAbsScalerPredictBatchOp
功能介绍
vector绝对值最大标准化是对vector数据按照最大值和最小值进行标准化的组件, 将数据归一到-1和1之间。
预测组件使用 VectorMaxAbsScalerTrainBatchOp 训练生成的模型,处理数据之后生成结果数据。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", "10.0, 100"],
["b", "-2.5, 9"],
["c", "100.2, 1"],
["d", "-99.9, 100"],
["a", "1.4, 1"],
["b", "-2.2, 9"],
["c", "100.9, 1"]
])
data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string")
trainOp = VectorMaxAbsScalerTrainBatchOp()\
.setSelectedCol("vec")
model = trainOp.linkFrom(data)
batchPredictOp = VectorMaxAbsScalerPredictBatchOp()
batchPredictOp.linkFrom(model, data).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class VectorMaxAbsScalerPredictBatchOpTest {
@Test
public void testVectorMaxAbsScalerPredictBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", "10.0, 100"),
Row.of("b", "-2.5, 9"),
Row.of("c", "100.2, 1"),
Row.of("d", "-99.9, 100"),
Row.of("a", "1.4, 1"),
Row.of("b", "-2.2, 9"),
Row.of("c", "100.9, 1")
);
BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string");
BatchOperator <?> trainOp = new VectorMaxAbsScalerTrainBatchOp()
.setSelectedCol("vec");
BatchOperator <?> model = trainOp.linkFrom(data);
BatchOperator <?> batchPredictOp = new VectorMaxAbsScalerPredictBatchOp();
batchPredictOp.linkFrom(model, data).print();
}
}
运行结果
| col | vec | | —- | —- |
| a | 0.09910802775024777 1.0 |
| b | -0.024777006937561942 0.09 |
| c | 0.9930624380574826 0.01 |
| d | -0.9900891972249752 1.0 |
| a | 0.013875123885034686 0.01 |
| b | -0.02180376610505451 0.09 |
| c | 1.0 0.01 |