Java 类名:com.alibaba.alink.pipeline.tuning.RandomSearchCV
Python 类名:RandomSearchCV
功能介绍
randomsearch是通过随机参数,对其中的每一组输入参数的组很分别进行训练,预测,评估。取得评估参数最优的模型,作为最终的返回模型
cv为交叉验证,将数据切分为k-folds,对每k-1份数据做训练,对剩余一份数据做预测和评估,得到一个评估结果。
此函数用cv方法得到每一个grid对应参数的评估结果,得到最优模型
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 默认值 | | —- | —- | —- | —- | —- | —- |
| NumFolds | 折数 | 交叉验证的参数,数据的折数(大于等于2) | Integer | | 10 |
| ParamDist | 参数分布 | 指定搜索的参数的分布 | ParamDist | ✓ | —- |
| Estimator | Estimator | 用于调优的Estimator | Estimator | ✓ | —- |
| TuningEvaluator | 评估指标 | 用于选择最优模型的评估指标 | TuningEvaluator | ✓ | —- |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
def adult(url):
data = (
CsvSourceBatchOp()
.setFilePath('https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/adult_train.csv')
.setSchemaStr(
'age bigint, workclass string, fnlwgt bigint,'
'education string, education_num bigint,'
'marital_status string, occupation string,'
'relationship string, race string, sex string,'
'capital_gain bigint, capital_loss bigint,'
'hours_per_week bigint, native_country string,'
'label string'
)
)
return data
def adult_train():
return adult('https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/adult_train.csv')
def adult_test():
return adult('https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/adult_test.csv')
def adult_numerical_feature_strs():
return [
"age", "fnlwgt", "education_num",
"capital_gain", "capital_loss", "hours_per_week"
]
def adult_categorical_feature_strs():
return [
"workclass", "education", "marital_status",
"occupation", "relationship", "race", "sex",
"native_country"
]
def adult_features_strs():
feature = adult_numerical_feature_strs()
feature.extend(adult_categorical_feature_strs())
return feature
def rf_grid_search_cv(featureCols, categoryFeatureCols, label, metric):
rf = (
RandomForestClassifier()
.setFeatureCols(featureCols)
.setCategoricalCols(categoryFeatureCols)
.setLabelCol(label)
.setPredictionCol('prediction')
.setPredictionDetailCol('prediction_detail')
)
paramDist = (
ParamDist()
.addDist(rf, 'NUM_TREES', ValueDist.randInteger(1, 10))
)
tuningEvaluator = (
BinaryClassificationTuningEvaluator()
.setLabelCol(label)
.setPredictionDetailCol("prediction_detail")
.setTuningBinaryClassMetric(metric)
)
cv = (
RandomSearchCV()
.setEstimator(rf)
.setParamDist(paramDist)
.setTuningEvaluator(tuningEvaluator)
.setNumFolds(2)
)
return cv
def rf_grid_search_tv(featureCols, categoryFeatureCols, label, metric):
rf = (
RandomForestClassifier()
.setFeatureCols(featureCols)
.setCategoricalCols(categoryFeatureCols)
.setLabelCol(label)
.setPredictionCol('prediction')
.setPredictionDetailCol('prediction_detail')
)
paramDist = (
ParamDist()
.addDist(rf, 'NUM_TREES', ValueDist.randInteger(1, 10))
)
tuningEvaluator = (
BinaryClassificationTuningEvaluator()
.setLabelCol(label)
.setPredictionDetailCol("prediction_detail")
.setTuningBinaryClassMetric(metric)
)
cv = (
RandomSearchTVSplit()
.setEstimator(rf)
.setParamDist(paramDist)
.setTuningEvaluator(tuningEvaluator)
)
return cv
def tuningcv(cv_estimator, input):
return cv_estimator.enableLazyPrintTrainInfo("CVTrainInfo").fit(input)
def tuningtv(tv_estimator, input):
return tv_estimator.enableLazyPrintTrainInfo("TVTrainInfo").fit(input)
def main():
print('rf cv tuning')
model = tuningcv(
rf_grid_search_cv(adult_features_strs(),
adult_categorical_feature_strs(), 'label', 'AUC'),
adult_train()
)
print('rf tv tuning')
model = tuningtv(
rf_grid_search_tv(adult_features_strs(),
adult_categorical_feature_strs(), 'label', 'AUC'),
adult_train()
)
main()
Java 代码
import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp;
import com.alibaba.alink.pipeline.classification.RandomForestClassifier;
import com.alibaba.alink.pipeline.tuning.BinaryClassificationTuningEvaluator;
import com.alibaba.alink.pipeline.tuning.ParamDist;
import com.alibaba.alink.pipeline.tuning.RandomSearchCV;
import com.alibaba.alink.pipeline.tuning.RandomSearchCVModel;
import com.alibaba.alink.pipeline.tuning.ValueDist;
import org.junit.Test;
public class RandomSearchCVTest {
@Test
public void testRandomSearchCV() throws Exception {
String[] featureCols = new String[] {
"age", "fnlwgt", "education_num",
"capital_gain", "capital_loss", "hours_per_week",
"workclass", "education", "marital_status",
"occupation", "relationship", "race", "sex",
"native_country"
};
String[] categoryFeatureCols = new String[] {
"workclass", "education", "marital_status",
"occupation", "relationship", "race", "sex",
"native_country"
};
String label = "label";
CsvSourceBatchOp data = new CsvSourceBatchOp()
.setFilePath("https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/adult_train.csv")
.setSchemaStr(
"age bigint, workclass string, fnlwgt bigint, education string, education_num bigint, marital_status "
+ "string, occupation string, relationship string, race string, sex string, capital_gain bigint, "
+ "capital_loss bigint, hours_per_week bigint, native_country string, label string");
RandomForestClassifier rf = new RandomForestClassifier()
.setFeatureCols(featureCols)
.setCategoricalCols(categoryFeatureCols)
.setLabelCol(label)
.setPredictionCol("prediction")
.setPredictionDetailCol("prediction_detail");
ParamDist paramDist = new ParamDist()
.addDist(rf, RandomForestClassifier.NUM_TREES, ValueDist.randInteger(1, 10));
BinaryClassificationTuningEvaluator tuningEvaluator = new BinaryClassificationTuningEvaluator()
.setLabelCol(label)
.setPredictionDetailCol("prediction_detail")
.setTuningBinaryClassMetric("AUC");
RandomSearchCV cv = new RandomSearchCV()
.setEstimator(rf)
.setParamDist(paramDist)
.setTuningEvaluator(tuningEvaluator)
.setNumFolds(2)
.enableLazyPrintTrainInfo("TrainInfo");
RandomSearchCVModel model = cv.fit(data);
}
}
运行结果
TrainInfo
Metric information:
Metric name: AUC
Larger is better: true
Tuning information:
| AUC | stage | param | value | | —- | —- | —- | —- |
| 0.9134148020313496 | RandomForestClassifier | numTrees | 10 |
| 0.9123992401477525 | RandomForestClassifier | numTrees | 10 |
| 0.9107724678432794 | RandomForestClassifier | numTrees | 8 |
| 0.905703319906151 | RandomForestClassifier | numTrees | 6 |
| 0.9052924036494705 | RandomForestClassifier | numTrees | 7 |
| 0.8927397325721704 | RandomForestClassifier | numTrees | 3 |
| 0.8887150253364192 | RandomForestClassifier | numTrees | 3 |
| 0.885191174049819 | RandomForestClassifier | numTrees | 3 |
| 0.8837444737636566 | RandomForestClassifier | numTrees | 2 |
| 0.8774725529763574 | RandomForestClassifier | numTrees | 2 |
运行结果
rf cv tuning
com.alibaba.alink.pipeline.tuning.GridSearchCV
[ {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 3
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 1.0
} ],
"metric" : 0.8922549257899725
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 3
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.99
} ],
"metric" : 0.8920255970548456
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 3
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.98
} ],
"metric" : 0.8944982480437225
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 6
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 1.0
} ],
"metric" : 0.8923867598288401
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 6
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.99
} ],
"metric" : 0.9012141767959505
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 6
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.98
} ],
"metric" : 0.8993774036693788
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 9
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 1.0
} ],
"metric" : 0.8981738808130779
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 9
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.99
} ],
"metric" : 0.9029671873892725
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 9
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.98
} ],
"metric" : 0.905228896323363
} ]
rf tv tuning
com.alibaba.alink.pipeline.tuning.GridSearchTVSplit
[ {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 3
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 1.0
} ],
"metric" : 0.9022694229691741
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 3
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.99
} ],
"metric" : 0.8963559966080328
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 3
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.98
} ],
"metric" : 0.9041948454957178
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 6
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 1.0
} ],
"metric" : 0.8982021117392784
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 6
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.99
} ],
"metric" : 0.9031851535310546
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 6
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.98
} ],
"metric" : 0.9034443322241488
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 9
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 1.0
} ],
"metric" : 0.8993474753000145
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 9
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.99
} ],
"metric" : 0.9090250137144916
}, {
"param" : [ {
"stage" : "RandomForestClassifier",
"paramName" : "numTrees",
"paramValue" : 9
}, {
"stage" : "RandomForestClassifier",
"paramName" : "subsamplingRatio",
"paramValue" : 0.98
} ],
"metric" : 0.9129786771786127
} ]