Java 类名:com.alibaba.alink.operator.stream.clustering.KMeansPredictStreamOp
Python 类名:KMeansPredictStreamOp
功能介绍
KMeans 是一个经典的聚类算法。
基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
Alink上KMeans算法包括KMeans,KMeans批量预测, KMeans流式预测。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| predictionDistanceCol | 预测距离列名 | 预测距离列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[0, "0 0 0"],
[1, "0.1,0.1,0.1"],
[2, "0.2,0.2,0.2"],
[3, "9 9 9"],
[4, "9.1 9.1 9.1"],
[5, "9.2 9.2 9.2"]
])
inOp1 = BatchOperator.fromDataframe(df, schemaStr='id int, vec string')
inOp2 = StreamOperator.fromDataframe(df, schemaStr='id int, vec string')
kmeans = KMeansTrainBatchOp()\
.setVectorCol("vec")\
.setK(2)\
.linkFrom(inOp1)
kmeans.lazyPrint(10)
predictBatch = KMeansPredictBatchOp()\
.setPredictionCol("pred")\
.linkFrom(kmeans, inOp1)
predictBatch.print()
predictStream = KMeansPredictStreamOp(kmeans)\
.setPredictionCol("pred")\
.linkFrom(inOp2)
predictStream.print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.clustering.KMeansPredictBatchOp;
import com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.clustering.KMeansPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class KMeansPredictBatchOpTest {
@Test
public void testKMeansPredictBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(0, "0 0 0"),
Row.of(1, "0.1,0.1,0.1"),
Row.of(2, "0.2,0.2,0.2"),
Row.of(3, "9 9 9"),
Row.of(4, "9.1 9.1 9.1"),
Row.of(5, "9.2 9.2 9.2")
);
BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "id int, vec string");
StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "id int, vec string");
BatchOperator <?> kmeans = new KMeansTrainBatchOp()
.setVectorCol("vec")
.setK(2)
.linkFrom(inOp1);
kmeans.lazyPrint(10);
BatchOperator <?> predictBatch = new KMeansPredictBatchOp()
.setPredictionCol("pred")
.linkFrom(kmeans, inOp1);
predictBatch.print();
StreamOperator <?> predictStream = new KMeansPredictStreamOp(kmeans)
.setPredictionCol("pred")
.linkFrom(inOp2);
predictStream.print();
StreamOperator.execute();
}
}
运行结果
模型结果
| model_id | model_info | | —- | —- |
| 0 | {“vectorCol”:””vec””,”latitudeCol”:null,”longitudeCol”:null,”distanceType”:””EUCLIDEAN””,”k”:”2”,”vectorSize”:”3”} |
| 1048576 | {“clusterId”:0,”weight”:3.0,”vec”:{“data”:[9.099999999999998,9.099999999999998,9.099999999999998]}} |
| 2097152 | {“clusterId”:1,”weight”:3.0,”vec”:{“data”:[0.1,0.1,0.1]}} |
预测结果
| id | vec | pred | | —- | —- | —- |
| 0 | 0 0 0 | 1 |
| 1 | 0.1,0.1,0.1 | 1 |
| 2 | 0.2,0.2,0.2 | 1 |
| 3 | 9 9 9 | 0 |
| 4 | 9.1 9.1 9.1 | 0 |
| 5 | 9.2 9.2 9.2 | 0 |