Java 类名:com.alibaba.alink.operator.batch.sql.UnionAllBatchOp
Python 类名:UnionAllBatchOp

功能介绍

对批式数据进行sql的UNION ALL操作。(不去重)

参数说明

| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

代码示例

Python 代码

  1. from pyalink.alink import *
  2. import pandas as pd
  3. useLocalEnv(1)
  4. df1 = pd.DataFrame([
  5. ['Ohio', 2000, 1.5],
  6. ['Ohio', 2000, 1.5],
  7. ['Ohio', 2002, 3.6],
  8. ['Nevada', 2001, 2.4],
  9. ['Nevada', 2002, 2.9],
  10. ['Nevada', 2003, 3.2]
  11. ])
  12. df2 = pd.DataFrame([
  13. ['Nevada', 2001, 2.4],
  14. ['Nevada', 2003, 3.2]
  15. ])
  16. batch_data1 = BatchOperator.fromDataframe(df1, schemaStr='f1 string, f2 bigint, f3 double')
  17. batch_data2 = BatchOperator.fromDataframe(df2, schemaStr='f1 string, f2 bigint, f3 double')
  18. UnionAllBatchOp().linkFrom(batch_data1, batch_data2).print()

Java 代码

  1. import org.apache.flink.types.Row;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  4. import com.alibaba.alink.operator.batch.sql.UnionBatchOp;
  5. import org.junit.Test;
  6. import java.util.Arrays;
  7. import java.util.List;
  8. public class UnionAllBatchOpTest {
  9. @Test
  10. public void testUnionAllBatchOp() throws Exception {
  11. List <Row> df1 = Arrays.asList(
  12. Row.of("Ohio", 2000, 1.5),
  13. Row.of("Ohio", 2000, 1.5),
  14. Row.of("Ohio", 2002, 3.6),
  15. Row.of("Nevada", 2001, 2.4),
  16. Row.of("Nevada", 2002, 2.9),
  17. Row.of("Nevada", 2003, 3.2)
  18. );
  19. List <Row> df2 = Arrays.asList(
  20. Row.of("Nevada", 2001, 2.4),
  21. Row.of("Nevada", 2003, 3.2)
  22. );
  23. BatchOperator <?> data1 = new MemSourceBatchOp(df1, "f1 string, f2 int, f3 double");
  24. BatchOperator <?> data2 = new MemSourceBatchOp(df2, "f1 string, f2 int, f3 double");
  25. BatchOperator <?> unionAll = new UnionAllBatchOp();
  26. unionAll.linkFrom(data1, data2).print();
  27. }
  28. }

运行结果

| f1 | f2 | f3 | | —- | —- | —- |

| Ohio | 2000 | 1.5000 |

| Ohio | 2000 | 1.5000 |

| Ohio | 2002 | 3.6000 |

| Nevada | 2001 | 2.4000 |

| Nevada | 2002 | 2.9000 |

| Nevada | 2003 | 3.2000 |

| Nevada | 2001 | 2.4000 |

| Nevada | 2003 | 3.2000 |