Java 类名:com.alibaba.alink.operator.batch.audio.ExtractMfccFeatureBatchOp
Python 类名:ExtractMfccFeatureBatchOp
功能介绍
- 从数据中提取 MFCC 特征。
- 支持Alink Vector、一维或两维Alink FloatTensor格式的数据
使用方式
用于声学特征提取,通常与ReadAudioToTensor组件一起使用,连接在其后文献索引
[1] Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J]. IEEE transactions on acoustics, speech, and signal processing, 1980, 28(4): 357-366.参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| sampleRate | 采样率 | 采样率 | Integer | ✓ | | |
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | | |
| hopTime | 相邻窗口时间间隔 | 相邻窗口时间间隔 | Double | | | 0.032 |
| numMfcc | mfcc参数 | mfcc参数 | Integer | | | 128 |
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| windowTime | 一个窗口的时间 | 一个窗口的时间 | Double | | | 0.128 |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
dataDir = "https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/audio";df = pd.DataFrame([["246.wav"],["247.wav"]])allFiles = BatchOperator.fromDataframe(df, schemaStr='wav_file_path string')SAMPLE_RATE = 16000readOp = ReadAudioToTensorBatchOp().setRootFilePath(dataDir) \.setSampleRate(SAMPLE_RATE) \.setRelativeFilePathCol("wav_file_path") \.setOutputCol("tensor") \.linkFrom(allFiles)mfccOp = ExtractMfccFeatureBatchOp() \.setSampleRate(SAMPLE_RATE) \.setSelectedCol("tensor") \.linkFrom(readOp)mfccOp.print()
Java 代码
import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.testutil.AlinkTestBase;import org.junit.Test;public class ExtractMfccFeatureBatchOpTest extends AlinkTestBase {@Testpublic void testExtractMfccFeatureBatchOp() throws Exception {String dataDir = "https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/audio";String[] allFiles = {"246.wav", "247.wav"};int sampleRate = 16000;String tensorName = "tensor";String mfccName = "mfcc";String wavFile = "wav_file_path";BatchOperator source = new MemSourceBatchOp(allFiles, wavFile).link(new ReadAudioToTensorBatchOp().setRootFilePath(dataDir).setSampleRate(sampleRate).setRelativeFilePathCol(wavFile).setDuration(2).setOutputCol(tensorName)).link(new ExtractMfccFeatureBatchOp().setSelectedCol(tensorName).setSampleRate(sampleRate).setWindowTime(0.128).setHopTime(0.032).setNumMfcc(26).setOutputCol(mfccName)).select(new String[]{wavFile, mfccName}).print();}}
运行结果
| wav_file_path | mfcc | | —- | —- |
| 246.wav | FLOAT#59,26,1#48.78127 -32.02646 12.432438 … |
| 247.wav | FLOAT#59,26,1#-50.62911 -13.844937 24.176699 … |
