Java 类名:com.alibaba.alink.pipeline.clustering.GaussianMixture
Python 类名:GaussianMixture
功能介绍
高斯混合模型聚类
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
取值范围 |
默认值 |
predictionCol |
预测结果列名 |
预测结果列名 |
String |
✓ |
|
|
vectorCol |
向量列名 |
向量列对应的列名 |
String |
✓ |
|
|
epsilon |
收敛阈值 |
当两轮迭代的中心点距离小于epsilon时,算法收敛。 |
Double |
|
|
1.0E-4 |
k |
聚类中心点数量 |
聚类中心点数量 |
Integer |
|
|
2 |
maxIter |
最大迭代步数 |
最大迭代步数,默认为 100 |
Integer |
|
[1, +inf) |
100 |
modelFilePath |
模型的文件路径 |
模型的文件路径 |
String |
|
|
null |
overwriteSink |
是否覆写已有数据 |
是否覆写已有数据 |
Boolean |
|
|
false |
predictionDetailCol |
预测详细信息列名 |
预测详细信息列名 |
String |
|
|
|
randomSeed |
随机数种子 |
随机数种子 |
Integer |
|
|
0 |
reservedCols |
算法保留列名 |
算法保留列 |
String[] |
|
|
null |
numThreads |
组件多线程线程个数 |
组件多线程线程个数 |
Integer |
|
|
1 |
modelStreamFilePath |
模型流的文件路径 |
模型流的文件路径 |
String |
|
|
null |
modelStreamScanInterval |
扫描模型路径的时间间隔 |
描模型路径的时间间隔,单位秒 |
Integer |
|
|
10 |
modelStreamStartTime |
模型流的起始时间 |
模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) |
String |
|
|
null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["-0.6264538 0.1836433"],
["-0.8356286 1.5952808"],
["0.3295078 -0.8204684"],
["0.4874291 0.7383247"],
["0.5757814 -0.3053884"],
["1.5117812 0.3898432"],
["-0.6212406 -2.2146999"],
["11.1249309 9.9550664"],
["9.9838097 10.9438362"],
["10.8212212 10.5939013"],
["10.9189774 10.7821363"],
["10.0745650 8.0106483"],
["10.6198257 9.9438713"],
["9.8442045 8.5292476"],
["9.5218499 10.4179416"],
])
data = BatchOperator.fromDataframe(df, schemaStr='features string')
gmm = GaussianMixture() \
.setPredictionCol("cluster_id") \
.setVectorCol("features") \
.setPredictionDetailCol("cluster_detail") \
.setEpsilon(0.)
gmm.fit(data).transform(data).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.clustering.GaussianMixture;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class GaussianMixtureTest {
@Test
public void testGaussianMixture() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of("-0.6264538 0.1836433"),
Row.of("-0.8356286 1.5952808"),
Row.of("0.3295078 -0.8204684"),
Row.of("0.4874291 0.7383247"),
Row.of("0.5757814 -0.3053884"),
Row.of("1.5117812 0.3898432"),
Row.of("-0.6212406 -2.2146999"),
Row.of("11.1249309 9.9550664"),
Row.of("9.9838097 10.9438362"),
Row.of("10.8212212 10.5939013"),
Row.of("10.9189774 10.7821363"),
Row.of("10.0745650 8.0106483"),
Row.of("10.6198257 9.9438713"),
Row.of("9.8442045 8.5292476"),
Row.of("9.5218499 10.4179416")
);
BatchOperator <?> data = new MemSourceBatchOp(df_data, "features string");
GaussianMixture gmm = new GaussianMixture()
.setPredictionCol("cluster_id")
.setVectorCol("features")
.setPredictionDetailCol("cluster_detail")
.setEpsilon(0.);
gmm.fit(data).transform(data).print();
}
}
运行结果
features |
cluster_id |
cluster_detail |
-0.6264538 0.1836433 |
0 |
1.0 4.275273913968281E-92 |
-0.8356286 1.5952808 |
0 |
1.0 1.0260377730239899E-92 |
0.3295078 -0.8204684 |
0 |
1.0 1.0970173367545207E-80 |
0.4874291 0.7383247 |
0 |
1.0 3.302173132311E-75 |
0.5757814 -0.3053884 |
0 |
1.0 3.1638113605165424E-76 |
1.5117812 0.3898432 |
0 |
1.0 2.101805230873172E-62 |
-0.6212406 -2.2146999 |
0 |
1.0 6.772270268600749E-97 |
11.1249309 9.9550664 |
1 |
3.156783801247968E-56 1.0 |
9.9838097 10.9438362 |
1 |
1.9024447346702425E-51 1.0 |
10.8212212 10.5939013 |
1 |
2.800973098729604E-56 1.0 |
10.9189774 10.7821363 |
1 |
1.7209132744891298E-57 1.0 |
10.0745650 8.0106483 |
1 |
2.8642696635130495E-43 1.0 |
10.6198257 9.9438713 |
1 |
5.773273991940433E-53 1.0 |
9.8442045 8.5292476 |
1 |
2.5273123050925483E-43 1.0 |
9.5218499 10.4179416 |
1 |
1.7314580596767853E-46 1.0 |