Java 类名:com.alibaba.alink.pipeline.recommendation.AlsRateRecommender
Python 类名:AlsRateRecommender
功能介绍
使用ALS (Alternating Lease Square)训练的模型对(user,item)输入流对进行实时评分预测。这里的ALS模型可以是隐式模型,也可以是显式模型。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
itemCol | Item列列名 | Item列列名 | String | ✓ | ||
recommCol | 推荐结果列名 | 推荐结果列名 | String | ✓ | ||
userCol | User列列名 | User列列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
[1, 1, 0.6],
[2, 2, 0.8],
[2, 3, 0.6],
[4, 1, 0.6],
[4, 2, 0.3],
[4, 3, 0.4],
])
data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')
als = AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating") \
.setNumIter(10).setRank(10).setLambda(0.01)
model = als.linkFrom(data)
alsRate = AlsRateRecommender().setUserCol("user").setItemCol("item").setRecommCol("rating") \
.setRecommCol("predicted_rating").setModelData(model)
alsRate.transform(data).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.recommendation.AlsTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.recommendation.AlsRateRecommender;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class AlsRateRecommenderTest {
@Test
public void testAlsRateRecommender() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of(1, 1, 0.6),
Row.of(2, 2, 0.8),
Row.of(2, 3, 0.6),
Row.of(4, 1, 0.6),
Row.of(4, 2, 0.3),
Row.of(4, 3, 0.4)
);
BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");
BatchOperator <?> als = new AlsTrainBatchOp().setUserCol("user").setItemCol("item").setRateCol("rating")
.setNumIter(10).setRank(10).setLambda(0.01);
BatchOperator model = als.linkFrom(data);
AlsRateRecommender alsRate = new AlsRateRecommender().setUserCol("user").setItemCol("item").setRecommCol(
"rating")
.setRecommCol("predicted_rating").setModelData(model);
alsRate.transform(data).print();
}
}
运行结果
| user | item | rating | predicted_rating | | —- | —- | —- | —- |
| 1 | 1 | 0.6000 | 0.5810 |
| 2 | 2 | 0.8000 | 0.7669 |
| 2 | 3 | 0.6000 | 0.5809 |
| 4 | 1 | 0.6000 | 0.5753 |
| 4 | 2 | 0.3000 | 0.2989 |
| 4 | 3 | 0.4000 | 0.3833 |