Java 类名:com.alibaba.alink.pipeline.dataproc.format.VectorToKv
Python 类名:VectorToKv
功能介绍
将数据格式从 Vector 转成 Kv
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| kvCol | KV列名 | KV列的列名 | String | ✓ | ||
| vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | ||
| handleInvalid | 解析异常处理策略 | 解析异常处理策略,可选为ERROR(抛出异常)或者SKIP(输出NULL) | String | “ERROR”, “SKIP” | “ERROR” | |
| kvColDelimiter | 分隔符 | 当输入数据为稀疏格式时,key-value对之间的分隔符 | String | “,” | ||
| kvValDelimiter | 分隔符 | 当输入数据为稀疏格式时,key和value的分割符 | String | “:” | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([['1', '{"f0":"1.0","f1":"2.0"}', '$3$0:1.0 1:2.0', '0:1.0,1:2.0', '1.0,2.0', 1.0, 2.0],['2', '{"f0":"4.0","f1":"8.0"}', '$3$0:4.0 1:8.0', '0:4.0,1:8.0', '4.0,8.0', 4.0, 8.0]])data = BatchOperator.fromDataframe(df, schemaStr="row string, json string, vec string, kv string, csv string, f0 double, f1 double")op = VectorToKv()\.setVectorCol("vec")\.setReservedCols(["row"])\.setKvCol("kv")\.transform(data)op.print()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.pipeline.dataproc.format.VectorToKv;import org.junit.Test;import java.util.Arrays;import java.util.List;public class VectorToKvTest {@Testpublic void testVectorToKv() throws Exception {List <Row> df = Arrays.asList(Row.of("1", "{\"f0\":\"1.0\",\"f1\":\"2.0\"}", "$3$0:1.0 1:2.0", "0:1.0,1:2.0", "1.0,2.0", 1.0, 2.0));BatchOperator <?> data = new MemSourceBatchOp(df,"row string, json string, vec string, kv string, csv string, f0 double, f1 double");BatchOperator op = new VectorToKv().setVectorCol("vec").setReservedCols("row").setKvCol("kv").transform(data);op.print();}}
运行结果
| row | kv | | —- | —- |
| 1 | 1:1.0,2:2.0 |
| 2 | 1:4.0,2:8.0 |
