Java 类名:com.alibaba.alink.operator.batch.classification.BertTextPairClassifierPredictBatchOp
Python 类名:BertTextPairClassifierPredictBatchOp
功能介绍
与 BERT 文本对分类训练组件对应的预测组件。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | | | 256 |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
url = "http://alink-algo-packages.oss-cn-hangzhou-zmf.aliyuncs.com/data/MRPC/train.tsv"
schemaStr = "f_quality bigint, f_id_1 string, f_id_2 string, f_string_1 string, f_string_2 string"
data = CsvSourceBatchOp() \
.setFilePath(url) \
.setSchemaStr(schemaStr) \
.setFieldDelimiter("\t") \
.setIgnoreFirstLine(True) \
.setQuoteChar(None)
data = data.firstN(300)
model = CsvSourceBatchOp() \
.setFilePath("http://alink-test.oss-cn-beijing.aliyuncs.com/jiqi-temp/tf_ut_files/bert_text_pair_classifier_model.csv") \
.setSchemaStr("model_id bigint, model_info string, label_value bigint")
predict = BertTextPairClassifierPredictBatchOp() \
.setPredictionCol("pred") \
.setPredictionDetailCol("pred_detail") \
.setReservedCols(["f_quality"]) \
.linkFrom(model, data)
predict.print()
Java 代码
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.BertTextPairClassifierPredictBatchOp;
import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp;
import org.junit.Test;
public class BertTextPairClassifierPredictBatchOpTest {
@Test
public void testBertTextPairClassifierPredictBatchOpTest() throws Exception {
String url = "http://alink-algo-packages.oss-cn-hangzhou-zmf.aliyuncs.com/data/MRPC/train.tsv";
String schemaStr = "f_quality bigint, f_id_1 string, f_id_2 string, f_string_1 string, f_string_2 string";
BatchOperator <?> data = new CsvSourceBatchOp()
.setFilePath(url)
.setSchemaStr(schemaStr)
.setFieldDelimiter("\t")
.setIgnoreFirstLine(true)
.setQuoteChar(null);
data = data.firstN(300);
BatchOperator <?> model = new CsvSourceBatchOp()
.setFilePath("http://alink-test.oss-cn-beijing.aliyuncs.com/jiqi-temp/tf_ut_files/bert_text_pair_classifier_model.csv")
.setSchemaStr("model_id bigint, model_info string, label_value bigint");
BertTextPairClassifierPredictBatchOp predict = new BertTextPairClassifierPredictBatchOp()
.setPredictionCol("pred")
.setPredictionDetailCol("pred_detail")
.setReservedCols("f_quality")
.linkFrom(model, data);
predict.print();
}
}
运行结果
| f_quality | pred | pred_detail | | —- | —- | —- |
| 1 | 1 | {“0”:0.07034707069396973,”1”:0.9296529293060303} |
| 0 | 1 | {“0”:0.07034707069396973,”1”:0.9296529293060303} |
| 1 | 1 | {“0”:0.07034707069396973,”1”:0.9296529293060303} |
| 0 | 1 | {“0”:0.07034707069396973,”1”:0.9296529293060303} |
| 1 | 1 | {“0”:0.07034707069396973,”1”:0.9296529293060303} |
| … | … | … |
| 1 | 1 | {“0”:0.0704156756401062,”1”:0.9295843243598938} |
| 1 | 1 | {“0”:0.0704156756401062,”1”:0.9295843243598938} |
| 1 | 1 | {“0”:0.0704156756401062,”1”:0.9295843243598938} |
| 1 | 1 | {“0”:0.0704156756401062,”1”:0.9295843243598938} |
| 0 | 1 | {“0”:0.0704156756401062,”1”:0.9295843243598938} |