Java 类名:com.alibaba.alink.operator.batch.classification.LogisticRegressionTrainBatchOp
Python 类名:LogisticRegressionTrainBatchOp
功能介绍
逻辑回归算法是经典的二分类算法,通过对打标签样本集合训练得到模型,使用模型预测样本的标签。逻辑回归组件支持稀疏、稠密两种数据格式。
算法原理
面对二分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。Logistic回归虽然名字里带“回归”,
但是它实际上是一种分类方法,主要用于二分类问题(即输出只有两种,分别代表两个类别)回归模型中,y是一个定性变量,比如y=0或1,
logistic方法主要应用于研究某些事件发生的概率。
算法使用
常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以心脏病病情分析为例,选择两组人群,
一组是心脏病组,一组是非心脏病组,两组人群必定具有不同的属性及身体指标。因此因变量就为是否有心脏病,值为“是”或“否”,自变量就可以包括很多了,
如年龄、性别、最大心跳数、血压、胆固醇、空腹血糖等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,
从而可以大致了解到底哪些因素是心脏病的危险因素。同时根据该权值可以根据危险因素预测一个人心脏病的可能性。
- 备注 :该组件训练的时候 FeatureCols 和 VectorCol 是两个互斥参数,只能有一个参数来描述算法的输入特征。
文献或出处
[1] Wright, R. E. (1995). Logistic regression. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 217–244). American Psychological Association.
[2] https://baike.baidu.com/item/logistic回归参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | | |
| epsilon | 收敛阈值 | 迭代方法的终止判断阈值,默认值为 1.0e-6 | Double | | [0.0, +inf) | 1.0E-6 |
| featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |
| l1 | L1 正则化系数 | L1 正则化系数,默认为0。 | Double | | [0.0, +inf) | 0.0 |
| l2 | 正则化系数 | L2 正则化系数,默认为0。 | Double | | [0.0, +inf) | 0.0 |
| maxIter | 最大迭代步数 | 最大迭代步数,默认为 100 | Integer | | [1, +inf) | 100 |
| optimMethod | 优化方法 | 优化问题求解时选择的优化方法 | String | | “LBFGS”, “GD”, “Newton”, “SGD”, “OWLQN” | null |
| standardization | 是否正则化 | 是否对训练数据做正则化,默认true | Boolean | | | true |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
| weightCol | 权重列名 | 权重列对应的列名 | String | | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |
| withIntercept | 是否有常数项 | 是否有常数项,默认true | Boolean | | | true |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
[2, 1, 1],
[3, 2, 1],
[4, 3, 2],
[2, 4, 1],
[2, 2, 1],
[4, 3, 2],
[1, 2, 1],
[5, 3, 2]
])
input = BatchOperator.fromDataframe(df_data, schemaStr='f0 int, f1 int, label int')
# load data
dataTest = input
colnames = ["f0","f1"]
lr = LogisticRegressionTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
model = input.link(lr)
predictor = LogisticRegressionPredictBatchOp().setPredictionCol("pred")
predictor.linkFrom(model, dataTest).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.LogisticRegressionPredictBatchOp;
import com.alibaba.alink.operator.batch.classification.LogisticRegressionTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class LogisticRegressionTrainBatchOpTest {
@Test
public void testLogisticRegressionTrainBatchOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of(2, 1, 1),
Row.of(3, 2, 1),
Row.of(4, 3, 2),
Row.of(2, 4, 1),
Row.of(2, 2, 1),
Row.of(4, 3, 2),
Row.of(1, 2, 1),
Row.of(5, 3, 2)
);
BatchOperator <?> input = new MemSourceBatchOp(df_data, "f0 int, f1 int, label int");
BatchOperator dataTest = input;
BatchOperator <?> lr = new LogisticRegressionTrainBatchOp().setFeatureCols("f0", "f1").setLabelCol("label");
BatchOperator model = input.link(lr);
BatchOperator <?> predictor = new LogisticRegressionPredictBatchOp().setPredictionCol("pred");
predictor.linkFrom(model, dataTest).print();
}
}
运行结果
| f0 | f1 | label | pred | | —- | —- | —- | —- |
| 2 | 1 | 1 | 1 |
| 3 | 2 | 1 | 1 |
| 4 | 3 | 2 | 2 |
| 2 | 4 | 1 | 1 |
| 2 | 2 | 1 | 1 |
| 4 | 3 | 2 | 2 |
| 1 | 2 | 1 | 1 |
| 5 | 3 | 2 | 2 |
备注
- 该组件的输入为训练数据,输出为逻辑回归模型。
- 参数数据库的使用方式可以覆盖多个参数的使用方式。