Java 类名:com.alibaba.alink.operator.stream.dataproc.IndexToStringPredictStreamOp
Python 类名:IndexToStringPredictStreamOp
功能介绍
基于 StringIndexer 模型,将一列整数映射为字符串。
在流式预测中,IndexToStringPredictStreamOp 在创建对象时,需要指定模型数据
(StringIndexer的getModelData()获取,或者直接输入StringIndexerTrainBatchOp)。
在LinkFrom中指定流式数据。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| modelName | 模型名字 | 模型名字 | String | ✓ | | |
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [LONG] | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
["football"],
["football"],
["football"],
["basketball"],
["basketball"],
["tennis"],
])
train_data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string')
data = StreamOperator.fromDataframe(df_data, schemaStr='f0 string')
stringIndexer = StringIndexer() \
.setModelName("string_indexer_model") \
.setSelectedCol("f0") \
.setOutputCol("f0_indexed") \
.setStringOrderType("frequency_asc").fit(train_data)
indexed = stringIndexer.transform(data)
indexToStrings = IndexToStringPredictStreamOp(stringIndexer.getModelData()) \
.setSelectedCol("f0_indexed") \
.setOutputCol("f0_indxed_unindexed")
indexToStrings.linkFrom(indexed).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.dataproc.IndexToStringPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import com.alibaba.alink.pipeline.dataproc.StringIndexer;
import com.alibaba.alink.pipeline.dataproc.StringIndexerModel;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class IndexToStringPredictStreamOpTest {
@Test
public void testIndexToStringPredictStreamOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of("football"),
Row.of("football"),
Row.of("football"),
Row.of("basketball"),
Row.of("basketball"),
Row.of("tennis")
);
BatchOperator <?> train_data = new MemSourceBatchOp(df_data, "f0 string");
StreamOperator <?> data = new MemSourceStreamOp(df_data, "f0 string");
StringIndexerModel stringIndexer = new StringIndexer()
.setModelName("string_indexer_model")
.setSelectedCol("f0")
.setOutputCol("f0_indexed")
.setStringOrderType("frequency_asc").fit(train_data);
StreamOperator indexed = stringIndexer.transform(data);
StreamOperator <?> indexToStrings = new IndexToStringPredictStreamOp(stringIndexer.getModelData())
.setSelectedCol("f0_indexed")
.setOutputCol("f0_indxed_unindexed");
indexToStrings.linkFrom(indexed).print();
StreamOperator.execute();
}
}
运行结果
| f0 | f0_indexed | f0_indxed_unindexed | | —- | —- | —- |
| football | 2 | football |
| football | 2 | football |
| football | 2 | football |
| basketball | 1 | basketball |
| basketball | 1 | basketball |
| tennis | 0 | tennis |