Java 类名:com.alibaba.alink.operator.batch.feature.ChiSqSelectorBatchOp
Python 类名:ChiSqSelectorBatchOp
功能介绍
针对table数据,进行特征筛选
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
fdr | 发现阈值 | 发现阈值, 默认值0.05 | Double | 0.05 | ||
fpr | p value的阈值 | p value的阈值,默认值0.05 | Double | 0.05 | ||
fwe | 错误率阈值 | 错误率阈值, 默认值0.05 | Double | 0.05 | ||
numTopFeatures | 最大的p-value列个数 | 最大的p-value列个数, 默认值50 | Integer | 50 | ||
percentile | 筛选的百分比 | 筛选的百分比,默认值0.1 | Double | 0.1 | ||
selectorType | 筛选类型 | 筛选类型,包含”NumTopFeatures”,”percentile”, “fpr”, “fdr”, “fwe”五种。 | String | “NumTopFeatures”, “PERCENTILE”, “FPR”, “FDR”, “FWE” | “NumTopFeatures” |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 1, 1,2.0, True],
["c", 1, 2, -3.0, True],
["a", 2, 2,2.0, False],
["c", 0, 0, 0.0, False]
])
source = BatchOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean')
selector = ChiSqSelectorBatchOp()\
.setSelectedCols(["f_string", "f_long", "f_int", "f_double"])\
.setLabelCol("f_boolean")\
.setNumTopFeatures(2)
selector.linkFrom(source)
modelInfo: ChisqSelectorModelInfo = selector.collectModelInfo()
print(modelInfo.getColNames())
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.ChiSqSelectorBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.common.feature.ChisqSelectorModelInfo;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class ChiSqSelectorBatchOpTest {
@Test
public void testChiSqSelectorBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 1L, 1, 2.0, true),
Row.of("c", 1L, 2, -3.0, true),
Row.of("a", 2L, 2, 2.0, false),
Row.of("c", 0L, 0, 0.0, false)
);
BatchOperator <?> source = new MemSourceBatchOp(df,
"f_string string, f_long long, f_int int, f_double double, f_boolean boolean");
ChiSqSelectorBatchOp selector = new ChiSqSelectorBatchOp()
.setSelectedCols("f_string", "f_long", "f_int", "f_double")
.setLabelCol("f_boolean")
.setNumTopFeatures(2);
selector.linkFrom(source);
ChisqSelectorModelInfo modelInfo = selector.collectModelInfo();
System.out.println(modelInfo.toString());
}
}
运行结果
------------------------- ChisqSelectorModelInfo -------------------------
Number of Selector Features: 2
Number of Features: 4
Type of Selector: NumTopFeatures
Number of Top Features: 2
Selector Indices:
| ColName|ChiSquare|PValue| DF|Selected|
|--------|---------|------|---|--------|
| f_long| 4|0.1353| 2| true|
| f_int| 2|0.3679| 2| true|
|f_double| 2|0.3679| 2| false|
|f_string| 0| 1| 1| false|