Java 类名:com.alibaba.alink.operator.stream.classification.LogisticRegressionPredictStreamOp
Python 类名:LogisticRegressionPredictStreamOp
功能介绍
逻辑回归算法是经典的二分类算法,通过对打标签样本集合训练得到模型,使用模型预测样本的标签。逻辑回归组件支持稀疏、稠密两种数据格式。
算法原理
面对二分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。Logistic回归虽然名字里带“回归”,
但是它实际上是一种分类方法,主要用于二分类问题(即输出只有两种,分别代表两个类别)回归模型中,y是一个定性变量,比如y=0或1,
logistic方法主要应用于研究某些事件发生的概率。
算法使用
常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。以心脏病病情分析为例,选择两组人群,
一组是心脏病组,一组是非心脏病组,两组人群必定具有不同的属性及身体指标。因此因变量就为是否有心脏病,值为“是”或“否”,自变量就可以包括很多了,
如年龄、性别、最大心跳数、血压、胆固醇、空腹血糖等。自变量既可以是连续的,也可以是分类的。然后通过logistic回归分析,可以得到自变量的权重,
从而可以大致了解到底哪些因素是心脏病的危险因素。同时根据该权值可以根据危险因素预测一个人心脏病的可能性。
文献或出处
[1] Wright, R. E. (1995). Logistic regression. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 217–244). American Psychological Association.
[2] https://baike.baidu.com/item/logistic回归
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
[2, 1, 1],
[3, 2, 1],
[4, 3, 2],
[2, 4, 1],
[2, 2, 1],
[4, 3, 2],
[1, 2, 1],
[5, 3, 2]
])
batchData = BatchOperator.fromDataframe(df_data, schemaStr='f0 int, f1 int, label int')
streamData = StreamOperator.fromDataframe(df_data, schemaStr='f0 int, f1 int, label int')
dataTest = streamData
colnames = ["f0","f1"]
lr = LogisticRegressionTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
model = batchData.link(lr)
predictor = LogisticRegressionPredictStreamOp(model).setPredictionCol("pred")
predictor.linkFrom(dataTest).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.classification.LogisticRegressionTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.classification.LogisticRegressionPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class LogisticRegressionPredictStreamOpTest {
@Test
public void testLogisticRegressionPredictStreamOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of(2, 1, 1),
Row.of(3, 2, 1),
Row.of(4, 3, 2),
Row.of(2, 4, 1),
Row.of(2, 2, 1),
Row.of(4, 3, 2),
Row.of(1, 2, 1),
Row.of(5, 3, 2)
);
BatchOperator <?> batchData = new MemSourceBatchOp(df_data, "f0 int, f1 int, label int");
StreamOperator <?> streamData = new MemSourceStreamOp(df_data, "f0 int, f1 int, label int");
String[] colnames = new String[] {"f0", "f1"};
BatchOperator <?> lr = new LogisticRegressionTrainBatchOp().setFeatureCols(colnames).setLabelCol("label");
BatchOperator <?> model = batchData.link(lr);
StreamOperator <?> predictor = new LogisticRegressionPredictStreamOp(model).setPredictionCol("pred");
predictor.linkFrom(streamData).print();
StreamOperator.execute();
}
}
运行结果
| f0 | f1 | label | pred | | —- | —- | —- | —- |
| 2 | 1 | 1 | 1 |
| 3 | 2 | 1 | 1 |
| 4 | 3 | 2 | 2 |
| 2 | 4 | 1 | 1 |
| 2 | 2 | 1 | 1 |
| 4 | 3 | 2 | 2 |
| 1 | 2 | 1 | 1 |
| 5 | 3 | 2 | 2 |