Java 类名:com.alibaba.alink.operator.batch.outlier.IForestModelOutlierTrainBatchOp
Python 类名:IForestModelOutlierTrainBatchOp
功能介绍
iForest 可以识别数据中异常点,在异常检测领域有比较好的效果。算法使用 sub-sampling 方法,降低了算法的计算复杂度。
文献或出处
- Isolation Forest
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |
| numTrees | 模型中树的棵数 | 模型中树的棵数 | Integer | | | 100 |
| subsamplingSize | 每棵树的样本采样行数 | 每棵树的样本采样行数,默认 256 ,最小 2 ,最大 100000 . | Integer | | [1, 100000] | 256 |
| tensorCol | tensor列 | tensor列 | String | | 所选列类型为 [BOOL_TENSOR, BYTE_TENSOR, DOUBLE_TENSOR, FLOAT_TENSOR, INT_TENSOR, LONG_TENSOR, STRING, STRING_TENSOR, TENSOR, UBYTE_TENSOR] | null |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |
代码示例
Python 代码
import pandas as pd
df = pd.DataFrame([
[0.73, 0],
[0.24, 0],
[0.63, 0],
[0.55, 0],
[0.73, 0],
[0.41, 0]
])
dataOp = BatchOperator.fromDataframe(df, schemaStr='val double, label int')
trainOp = IForestModelOutlierTrainBatchOp()\
.setFeatureCols(["val"])
predOp = IForestModelOutlierPredictBatchOp()\
.setOutlierThreshold(3.0)\
.setPredictionCol("pred")\
.setPredictionDetailCol("pred_detail")
predOp.linkFrom(trainOp.linkFrom(dataOp), dataOp)
evalOp = EvalOutlierBatchOp()\
.setLabelCol("label")\
.setPredictionDetailCol("pred_detail")\
.setOutlierValueStrings(["1"]);
metrics = predOp\
.link(evalOp)\
.collectMetrics()
print(metrics)
Java 代码
package com.alibaba.alink.operator.batch.outlier;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.evaluation.EvalOutlierBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.common.evaluation.OutlierMetrics;
import com.alibaba.alink.testutil.AlinkTestBase;
import org.junit.Assert;
import org.junit.Test;
public class IForestModelOutlierTrainBatchOpTest extends AlinkTestBase {
@Test
public void test() {
BatchOperator <?> data = new MemSourceBatchOp(
new Object[][] {
{0.73, 0},
{0.24, 0},
{0.63, 0},
{0.55, 0},
{0.73, 0},
{0.41, 0},
},
new String[]{"val", "label"});
IForestModelOutlierTrainBatchOp trainOp = new IForestModelOutlierTrainBatchOp()
.setFeatureCols("val");
IForestModelOutlierPredictBatchOp predOp = new IForestModelOutlierPredictBatchOp()
.setOutlierThreshold(3.0)
.setPredictionCol("pred")
.setPredictionDetailCol("pred_detail");
predOp.linkFrom(trainOp.linkFrom(data), data);
EvalOutlierBatchOp eval = new EvalOutlierBatchOp()
.setLabelCol("label")
.setPredictionDetailCol("pred_detail")
.setOutlierValueStrings("1");
OutlierMetrics metrics = predOp
.link(eval)
.collectMetrics();
Assert.assertEquals(1.0, metrics.getAccuracy(), 10e-6);
}
}
运行结果
———————————————— Metrics: ————————————————
Outlier values: [1] Normal values: [0]
Auc:NaN Accuracy:1 Precision:1 Recall:0 F1:0
| Pred\Real | Outlier | Normal | | —- | —- | —- |
| Outlier | 0 | 0 |
| Normal | 0 | 6 |