Java 类名:com.alibaba.alink.operator.batch.regression.XGBoostRegTrainBatchOp
Python 类名:XGBoostRegTrainBatchOp
功能介绍
XGBoost 组件是在开源社区的基础上进行包装,使功能和 PAI 更兼容,更易用。
XGBoost 算法在 Boosting 算法的基础上进行了扩展和升级,具有较好的易用性和鲁棒性,被广泛用在各种机器学习生产系统和竞赛领域。
当前支持分类,回归和排序。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
numRound | 树的棵树 | 树的棵树 | Integer | ✓ | ||
alpha | L1正则项 | L1正则项 | Double | 1.0 | ||
baseScore | Base score | Base score | Double | 0.5 | ||
colSampleByLevel | 每个树列采样 | 每个树列采样 | Double | ✓ | 1.0 | |
colSampleByNode | 每个结点列采样 | 每个结点采样 | Double | ✓ | 1.0 | |
colSampleByTree | 每个树列采样 | 每个树列采样 | Double | ✓ | 1.0 | |
eta | 学习率 | 学习率 | Double | 0.3 | ||
featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | ✓ | [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, |
代码示例
以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!
Python 代码
df = pd.DataFrame([
[0, 1, 1.1, 1.0],
[1, -2, 0.9, 2.0],
[0, 100, -0.01, 3.0],
[1, -99, 0.1, 4.0],
[0, 1, 1.1, 5.0],
[1, -2, 0.9, 6.0]
])
batchSource = BatchOperator.fromDataframe(
df, schemaStr='y int, x1 double, x2 double, x3 double'
)
streamSource = StreamOperator.fromDataframe(
df, schemaStr='y int, x1 double, x2 double, x3 double'
)
trainOp = XGBoostRegTrainBatchOp()\
.setNumRound(1)\
.setPluginVersion('1.5.1')\
.setLabelCol('y')\
.linkFrom(batchSource)
predictBatchOp = XGBoostRegPredictBatchOp()\
.setPredictionCol('pred')\
.setPluginVersion('1.5.1')
predictStreamOp = XGBoostRegPredictStreamOp(trainOp)\
.setPredictionCol('pred')\
.setPluginVersion('1.5.1')
predictBatchOp.linkFrom(trainOp, batchSource).print()
predictStreamOp.linkFrom(streamSource).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.regression.XGBoostRegPredictBatchOp;
import com.alibaba.alink.operator.batch.regression.XGBoostRegTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.regression.XGBoostRegPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class XGBoostRegTrainBatchOpTest {
@Test
public void testXGBoostTrainBatchOp() throws Exception {
List <Row> data = Arrays.asList(
Row.of(0, 1, 1.1, 1.0),
Row.of(1, -2, 0.9, 2.0),
Row.of(0, 100, -0.01, 3.0),
Row.of(1, -99, 0.1, 4.0),
Row.of(0, 1, 1.1, 5.0),
Row.of(1, -2, 0.9, 6.0)
);
BatchOperator <?> batchSource = new MemSourceBatchOp(data, "y int, x1 int, x2 double, x3 double");
StreamOperator <?> streamSource = new MemSourceStreamOp(data, "y int, x1 int, x2 double, x3 double");
BatchOperator <?> trainOp = new XGBoostRegTrainBatchOp()
.setNumRound(1)
.setPluginVersion("1.5.1")
.setLabelCol("y")
.linkFrom(batchSource);
BatchOperator <?> predictBatchOp = new XGBoostRegPredictBatchOp()
.setPredictionCol("pred")
.setPluginVersion("1.5.1");
StreamOperator <?> predictStreamOp = new XGBoostRegPredictStreamOp(trainOp)
.setPredictionCol("pred")
.setPluginVersion("1.5.1");
predictBatchOp.linkFrom(trainOp, batchSource).print();
predictStreamOp.linkFrom(streamSource).print();
StreamOperator.execute();
}
}