Java 类名:com.alibaba.alink.operator.batch.classification.DecisionTreePredictBatchOp
Python 类名:DecisionTreePredictBatchOp
功能介绍
- 决策树组件支持稠密数据格式
 
- 支持带样本权重的训练
 
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[1.0, "A", 0, 0, 0],[2.0, "B", 1, 1, 0],[3.0, "C", 2, 2, 1],[4.0, "D", 3, 3, 1]])batchSource = BatchOperator.fromDataframe(df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int')streamSource = StreamOperator.fromDataframe(df, schemaStr=' f0 double, f1 string, f2 int, f3 int, label int')trainOp = DecisionTreeTrainBatchOp()\.setLabelCol('label')\.setFeatureCols(['f0', 'f1', 'f2', 'f3'])\.linkFrom(batchSource)predictBatchOp = DecisionTreePredictBatchOp()\.setPredictionDetailCol('pred_detail')\.setPredictionCol('pred')predictStreamOp = DecisionTreePredictStreamOp(trainOp)\.setPredictionDetailCol('pred_detail')\.setPredictionCol('pred')predictBatchOp.linkFrom(trainOp, batchSource).print()predictStreamOp.linkFrom(streamSource).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.classification.DecisionTreePredictBatchOp;import com.alibaba.alink.operator.batch.classification.DecisionTreeTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.classification.DecisionTreePredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class DecisionTreePredictBatchOpTest {@Testpublic void testDecisionTreePredictBatchOp() throws Exception {List <Row> df = Arrays.asList(Row.of(1.0, "A", 0, 0, 0),Row.of(2.0, "B", 1, 1, 0),Row.of(3.0, "C", 2, 2, 1),Row.of(4.0, "D", 3, 3, 1));BatchOperator <?> batchSource = new MemSourceBatchOp(df, " f0 double, f1 string, f2 int, f3 int, label int");StreamOperator <?> streamSource = new MemSourceStreamOp(df, " f0 double, f1 string, f2 int, f3 int, label int");BatchOperator <?> trainOp = new DecisionTreeTrainBatchOp().setLabelCol("label").setFeatureCols("f0", "f1", "f2", "f3").linkFrom(batchSource);BatchOperator <?> predictBatchOp = new DecisionTreePredictBatchOp().setPredictionDetailCol("pred_detail").setPredictionCol("pred");StreamOperator <?> predictStreamOp = new DecisionTreePredictStreamOp(trainOp).setPredictionDetailCol("pred_detail").setPredictionCol("pred");predictBatchOp.linkFrom(trainOp, batchSource).print();predictStreamOp.linkFrom(streamSource).print();StreamOperator.execute();}}
运行结果
批预测结果
| f0 | f1 | f2 | f3 | label | pred | pred_detail | | —- | —- | —- | —- | —- | —- | —- |
| 1.0000 | A | 0 | 0 | 0 | 0 | {“0”:1.0,”1”:0.0} |
| 2.0000 | B | 1 | 1 | 0 | 0 | {“0”:1.0,”1”:0.0} |
| 3.0000 | C | 2 | 2 | 1 | 1 | {“0”:0.0,”1”:1.0} |
| 4.0000 | D | 3 | 3 | 1 | 1 | {“0”:0.0,”1”:1.0} |
