Java 类名:com.alibaba.alink.operator.batch.evaluation.EvalRankingBatchOp
Python 类名:EvalRankingBatchOp
功能介绍
排序评估是对推荐排序算法的预测结果进行效果评估,支持下列评估指标。
hitRate
#### averageReciprocalHitRank #### map (Mean Average Precision) #### ndcgArray (Normalized Discounted Cumulative Gain)
subsetAccuracy
#### hammingLoss #### accuracy #### microPrecision #### microRecall #### microF1 #### precision #### recall #### f1
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | | |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| labelRankingInfo | Object列列名 | Object列列名 | String | | | “object” |
| predictionRankingInfo | Object列列名 | Object列列名 | String | | | “object” |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["{\"object\":\"[1, 6, 2, 7, 8, 3, 9, 10, 4, 5]\"}", "{\"object\":\"[1, 2, 3, 4, 5]\"}"],
["{\"object\":\"[4, 1, 5, 6, 2, 7, 3, 8, 9, 10]\"}", "{\"object\":\"[1, 2, 3]\"}"],
["{\"object\":\"[1, 2, 3, 4, 5]\"}", "{\"object\":\"[]\"}"]
])
inOp = BatchOperator.fromDataframe(df, schemaStr='pred string, label string')
metrics = EvalRankingBatchOp().setPredictionCol('pred').setLabelCol('label').linkFrom(inOp).collectMetrics()
print(metrics)
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.evaluation.EvalRankingBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.common.evaluation.RankingMetrics;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class EvalRankingBatchOpTest {
@Test
public void testEvalRankingBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("{\"object\":\"[1, 6, 2, 7, 8, 3, 9, 10, 4, 5]\"}", "{\"object\":\"[1, 2, 3, 4, 5]\"}"),
Row.of("{\"object\":\"[4, 1, 5, 6, 2, 7, 3, 8, 9, 10]\"}", "{\"object\":\"[1, 2, 3]\"}"),
Row.of("{\"object\":\"[1, 2, 3, 4, 5]\"}", "{\"object\":\"[]\"}")
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "pred string, label string");
RankingMetrics metrics = new EvalRankingBatchOp().setPredictionCol("pred").setLabelCol("label").linkFrom(inOp)
.collectMetrics();
System.out.println(metrics.toString());
}
}
运行结果
-------------------------------- Metrics: --------------------------------
microPrecision:0.32
averageReciprocalHitRank:0.5
precision:0.2667
accuracy:0.2667
f1:0.3761
hitRate:0.6667
microRecall:1
microF1:0.4848
subsetAccuracy:0
recall:0.6667
map:0.355
hammingLoss:0.5667