Java 类名:com.alibaba.alink.operator.batch.outlier.IForestOutlierBatchOp
Python 类名:IForestOutlierBatchOp

功能介绍

iForest 可以识别数据中异常点,在异常检测领域有比较好的效果。算法使用 sub-sampling 方法,降低了算法的计算复杂度。

文献或出处

  1. Isolation Forest

    参数说明

    | 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |

| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |

| featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |

| groupCols | 分组列名数组 | 分组列名,多列,可选,默认不选 | String[] | | | null |

| maxOutlierNumPerGroup | 每组最大异常点数目 | 每组最大异常点数目 | Integer | | | |

| maxOutlierRatio | 最大异常点比例 | 算法检测异常点的最大比例 | Double | | | |

| maxSampleNumPerGroup | 每组最大样本数目 | 每组最大样本数目 | Integer | | | |

| numTrees | 模型中树的棵数 | 模型中树的棵数 | Integer | | | 100 |

| outlierThreshold | 异常评分阈值 | 只有评分大于该阈值才会被认为是异常点 | Double | | | |

| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | | | |

| subsamplingSize | 每棵树的样本采样行数 | 每棵树的样本采样行数,默认 256 ,最小 2 ,最大 100000 . | Integer | | [1, 100000] | 256 |

| tensorCol | tensor列 | tensor列 | String | | 所选列类型为 [BOOL_TENSOR, BYTE_TENSOR, DOUBLE_TENSOR, FLOAT_TENSOR, INT_TENSOR, LONG_TENSOR, STRING, STRING_TENSOR, TENSOR, UBYTE_TENSOR] | null |

| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null |

| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |

代码示例

Python 代码

  1. import pandas as pd
  2. df = pd.DataFrame([
  3. [0.73, 0],
  4. [0.24, 0],
  5. [0.63, 0],
  6. [0.55, 0],
  7. [0.73, 0],
  8. [0.41, 0]
  9. ])
  10. dataOp = BatchOperator.fromDataframe(df, schemaStr='val double, label int')
  11. outlierOp = IForestOutlierBatchOp()\
  12. .setFeatureCols(["val"])\
  13. .setOutlierThreshold(3.0)\
  14. .setPredictionCol("pred")\
  15. .setPredictionDetailCol("pred_detail")
  16. evalOp = EvalOutlierBatchOp()\
  17. .setLabelCol("label")\
  18. .setPredictionDetailCol("pred_detail")\
  19. .setOutlierValueStrings(["1"]);
  20. metrics = dataOp\
  21. .link(outlierOp)\
  22. .link(evalOp)\
  23. .collectMetrics()
  24. print(metrics)

Java 代码

  1. package com.alibaba.alink.operator.batch.outlier;
  2. import com.alibaba.alink.operator.batch.BatchOperator;
  3. import com.alibaba.alink.operator.batch.evaluation.EvalOutlierBatchOp;
  4. import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
  5. import com.alibaba.alink.operator.common.evaluation.OutlierMetrics;
  6. import com.alibaba.alink.testutil.AlinkTestBase;
  7. import org.junit.Assert;
  8. import org.junit.Test;
  9. public class IForestOutlierBatchOpTest extends AlinkTestBase {
  10. @Test
  11. public void test() throws Exception {
  12. BatchOperator <?> data = new MemSourceBatchOp(
  13. new Object[][] {
  14. {0.73, 0},
  15. {0.24, 0},
  16. {0.63, 0},
  17. {0.55, 0},
  18. {0.73, 0},
  19. {0.41, 0},
  20. },
  21. new String[]{"val", "label"});
  22. BatchOperator <?> outlier = new IForestOutlierBatchOp()
  23. .setFeatureCols("val")
  24. .setOutlierThreshold(3.0)
  25. .setPredictionCol("pred")
  26. .setPredictionDetailCol("pred_detail");
  27. EvalOutlierBatchOp eval = new EvalOutlierBatchOp()
  28. .setLabelCol("label")
  29. .setPredictionDetailCol("pred_detail")
  30. .setOutlierValueStrings("1");
  31. OutlierMetrics metrics = data
  32. .link(outlier)
  33. .link(eval)
  34. .collectMetrics();
  35. Assert.assertEquals(1.0, metrics.getAccuracy(), 10e-6);
  36. }
  37. }

运行结果

———————————————— Metrics: ————————————————
Outlier values: [1] Normal values: [0]
Auc:NaN Accuracy:1 Precision:1 Recall:0 F1:0

| Pred\Real | Outlier | Normal | | —- | —- | —- |

| Outlier | 0 | 0 |

| Normal | 0 | 6 |