Java 类名:com.alibaba.alink.operator.batch.nlp.DocCountVectorizerTrainBatchOp
Python 类名:DocCountVectorizerTrainBatchOp
功能介绍
根据文本中词语的特征信息,将每条文本转化为稀疏向量。
使用方式
该组件是训练组件,需要配合预测组件 DocCountVectorizerPredictBatch/StreamOp 使用。
文本内容列(SelectedCol)中的内容用于统计词语的统计信息,需要是用空格分隔的词语。
将文本转换为稀疏向量时,每个唯一的词语将对应向量中的一个唯一的索引值。 而向量中对应索引的值表示这个词语在文本中的特征信息,可以通过参数 featureType 来选择不同的特征。
在转换时,所使用的词语集合还可以通过参数来进行筛选:
- maxDF/minDF:根据包含词语的文本次数(DF)进行筛选(当设置值在[0,1)区间时,表示占总文本数的比例);
- minTF:仅在预测单条文本时起作用,根据词语在当前文本中的出现的次数进行筛选(当设置值在[0,1)区间时,表示占当前文本总次数的比例);
- vocabSize:根据词语在所有文本中出现的总次数排序,只使用前 vocabSize 个词语。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
| featureType | 特征类型 | 生成特征向量的类型,支持IDF/WORD_COUNT/TF_IDF/Binary/TF | String | | “IDF”, “WORD_COUNT”, “TF_IDF”, “BINARY”, “TF” | “WORD_COUNT” |
| maxDF | 最大词频 | 如果一个词出现的文档次数大于maxDF, 这个词不会被包含在字典中。maxDF可以是具体的词频也可以是整体词频的比例,如果minDF在[0,1)区间,会被认为是比例。 | Double | | | 1.7976931348623157E308 |
| minDF | 最小文档词频 | 如果一个词出现的文档次数小于minDF, 这个词不会被包含在字典中。minTF可以是具体的词频也可以是整体词频的比例,如果minDF在[0,1)区间,会被认为是比例。 | Double | | | 1.0 |
| minTF | 最低词频 | 最低词频,如果词频小于minTF,这个词会被忽略掉。minTF可以是具体的词频也可以是整体词频的比例,如果minTF在[0,1)区间,会被认为是比例。 | Double | | | 1.0 |
| vocabSize | 字典库大小 | 字典库大小,如果总词数目大于这个值,那个文档频率低的词会被过滤掉。 | Integer | | | 262144 |
代码示例
Python 代码
df = pd.DataFrame([
[0, u'二手旧书:医学电磁成像'],
[1, u'二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969'],
[2, u'二手正版图解象棋入门/谢恩思主编/华龄出版社'],
[3, u'二手中国糖尿病文献索引'],
[4, u'二手郁达夫文集( 国内版 )全十二册馆藏书']
])
inOp1 = BatchOperator.fromDataframe(df, schemaStr='id int, text string')
segment = SegmentBatchOp().setSelectedCol("text").linkFrom(inOp1)
train = DocCountVectorizerTrainBatchOp().setSelectedCol("text").linkFrom(segment)
predictBatch = DocCountVectorizerPredictBatchOp().setSelectedCol("text").linkFrom(train, segment)
train.lazyPrint(-1)
predictBatch.print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.nlp.DocCountVectorizerPredictBatchOp;
import com.alibaba.alink.operator.batch.nlp.DocCountVectorizerTrainBatchOp;
import com.alibaba.alink.operator.batch.nlp.SegmentBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class DocCountVectorizerTrainBatchOpTest {
@Test
public void testDocCountVectorizerTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(0, "二手旧书:医学电磁成像"),
Row.of(1, "二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969"),
Row.of(2, "二手正版图解象棋入门/谢恩思主编/华龄出版社"),
Row.of(3, "二手中国糖尿病文献索引"),
Row.of(4, "二手郁达夫文集( 国内版 )全十二册馆藏书")
);
BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "id int, text string");
BatchOperator <?> segment = new SegmentBatchOp().setSelectedCol("text").linkFrom(inOp1);
BatchOperator <?> train = new DocCountVectorizerTrainBatchOp().setSelectedCol("text").linkFrom(segment);
BatchOperator <?> predictBatch = new DocCountVectorizerPredictBatchOp().setSelectedCol("text").linkFrom(train,
segment);
train.lazyPrint(-1);
predictBatch.print();
}
}
运行结果
模型数据
| model_id | model_info | | —- | —- |
| 0 | {“minTF”:”1.0”,”featureType”:””WORD_COUNT””} |
| 1048576 | {“f0”:”)”,”f1”:0.6931471805599453,”f2”:0} |
| 2097152 | {“f0”:”(”,”f1”:0.6931471805599453,”f2”:1} |
| 3145728 | {“f0”:”馆藏”,”f1”:1.0986122886681098,”f2”:2} |
| 4194304 | {“f0”:”郁达夫”,”f1”:1.0986122886681098,”f2”:3} |
| 5242880 | {“f0”:”选读”,”f1”:1.0986122886681098,”f2”:4} |
| 6291456 | {“f0”:”象棋”,”f1”:1.0986122886681098,”f2”:5} |
| 7340032 | {“f0”:”谢恩”,”f1”:1.0986122886681098,”f2”:6} |
| 8388608 | {“f0”:”美国”,”f1”:1.0986122886681098,”f2”:7} |
| 9437184 | {“f0”:”索引”,”f1”:1.0986122886681098,”f2”:8} |
| 10485760 | {“f0”:”糖尿病”,”f1”:1.0986122886681098,”f2”:9} |
| 11534336 | {“f0”:”电磁”,”f1”:1.0986122886681098,”f2”:10} |
| 12582912 | {“f0”:”版”,”f1”:1.0986122886681098,”f2”:11} |
| 13631488 | {“f0”:”正版”,”f1”:1.0986122886681098,”f2”:12} |
| 14680064 | {“f0”:”李宜燮”,”f1”:1.0986122886681098,”f2”:13} |
| 15728640 | {“f0”:”旧书”,”f1”:1.0986122886681098,”f2”:14} |
| 16777216 | {“f0”:”文集”,”f1”:1.0986122886681098,”f2”:15} |
| 17825792 | {“f0”:”文献”,”f1”:1.0986122886681098,”f2”:16} |
| 18874368 | {“f0”:”文学”,”f1”:1.0986122886681098,”f2”:17} |
| 19922944 | {“f0”:”成像”,”f1”:1.0986122886681098,”f2”:18} |
| 20971520 | {“f0”:”思”,”f1”:1.0986122886681098,”f2”:19} |
| 22020096 | {“f0”:”图解”,”f1”:1.0986122886681098,”f2”:20} |
| 23068672 | {“f0”:”国内”,”f1”:1.0986122886681098,”f2”:21} |
| 24117248 | {“f0”:”南开大学”,”f1”:1.0986122886681098,”f2”:22} |
| 25165824 | {“f0”:”华龄”,”f1”:1.0986122886681098,”f2”:23} |
| 26214400 | {“f0”:”十二册”,”f1”:1.0986122886681098,”f2”:24} |
| 27262976 | {“f0”:”医学”,”f1”:1.0986122886681098,”f2”:25} |
| 28311552 | {“f0”:”出版社”,”f1”:0.6931471805599453,”f2”:26} |
| 29360128 | {“f0”:”全”,”f1”:1.0986122886681098,”f2”:27} |
| 30408704 | {“f0”:”入门”,”f1”:1.0986122886681098,”f2”:28} |
| 31457280 | {“f0”:”二手”,”f1”:0.0,”f2”:29} |
| 32505856 | {“f0”:”书”,”f1”:1.0986122886681098,”f2”:30} |
| 33554432 | {“f0”:”主编”,”f1”:1.0986122886681098,”f2”:31} |
| 34603008 | {“f0”:”中国”,”f1”:1.0986122886681098,”f2”:32} |
| 35651584 | {“f0”:”下册”,”f1”:1.0986122886681098,”f2”:33} |
| 36700160 | {“f0”:”:”,”f1”:1.0986122886681098,”f2”:34} |
| 37748736 | {“f0”:”9787310003969”,”f1”:1.0986122886681098,”f2”:35} |
| 38797312 | {“f0”:”/“,”f1”:1.0986122886681098,”f2”:36} |
批预测结果
| id | text | | —- | —- |
| 0 | $37$10:1.0 14:1.0 18:1.0 25:1.0 29:1.0 34:1.0 |
| 1 | $37$0:1.0 1:1.0 4:1.0 7:1.0 13:1.0 17:1.0 22:1.0 26:1.0 29:1.0 33:1.0 35:1.0 |
| 2 | $37$5:1.0 6:1.0 12:1.0 19:1.0 20:1.0 23:1.0 26:1.0 28:1.0 29:1.0 31:1.0 36:2.0 |
| 3 | $37$8:1.0 9:1.0 16:1.0 29:1.0 32:1.0 |
| 4 | $37$0:1.0 1:1.0 2:1.0 3:1.0 11:1.0 15:1.0 21:1.0 24:1.0 27:1.0 29:1.0 30:1.0 |