Java 类名:com.alibaba.alink.operator.batch.recommendation.LeaveTopKObjectOutBatchOp
Python 类名:LeaveTopKObjectOutBatchOp
功能介绍
将推荐结果按取topK部分作为一个输出表。
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| groupCol | 分组列 | 分组单列名,必选 | String | ✓ | | |
| objectCol | Object列列名 | Object列列名 | String | ✓ | | |
| outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | | |
| rateCol | 打分列列名 | 打分列列名 | String | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
| fraction | 拆分到测试集最大数据比例 | 拆分到测试集最大数据比例 | Double | | [0.0, 1.0] | 1.0 |
| k | 推荐TOP数量 | 推荐TOP数量 | Integer | | | 10 |
| rateThreshold | 打分阈值 | 打分阈值 | Double | | | -Infinity |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df_data = pd.DataFrame([
[1, 1, 0.6],
[2, 2, 0.8],
[2, 3, 0.6],
[4, 0, 0.6],
[6, 4, 0.3],
[4, 7, 0.4],
[2, 6, 0.6],
[4, 5, 0.6],
[4, 6, 0.3],
[4, 3, 0.4]
])
data = BatchOperator.fromDataframe(df_data, schemaStr='user bigint, item bigint, rating double')
spliter = LeaveTopKObjectOutBatchOp()\
.setK(2)\
.setGroupCol("user")\
.setObjectCol("item")\
.setOutputCol("label")\
.setRateCol("rating")
spliter.linkFrom(data).print()
spliter.getSideOutput(0).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.recommendation.LeaveTopKObjectOutBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class LeaveTopKObjectOutBatchOpTest {
@Test
public void testLeaveTopKObjectOutBatchOp() throws Exception {
List <Row> df_data = Arrays.asList(
Row.of(1, 1, 0.6),
Row.of(2, 2, 0.8),
Row.of(2, 3, 0.6),
Row.of(4, 0, 0.6),
Row.of(6, 4, 0.3),
Row.of(4, 7, 0.4),
Row.of(2, 6, 0.6),
Row.of(4, 5, 0.6),
Row.of(4, 6, 0.3),
Row.of(4, 3, 0.4)
);
BatchOperator <?> data = new MemSourceBatchOp(df_data, "user int, item int, rating double");
BatchOperator <?> spliter = new LeaveTopKObjectOutBatchOp()
.setK(2)
.setGroupCol("user")
.setObjectCol("item")
.setOutputCol("label")
.setRateCol("rating");
spliter.linkFrom(data).print();
spliter.getSideOutput(0).print();
}
}
运行结果
| user | label | | —- | —- |
| 1 | {“item”:”[1]”,”rating”:”[0.6]”} |
| 6 | {“item”:”[4]”,”rating”:”[0.3]”} |
| 4 | {“item”:”[0,5]”,”rating”:”[0.6,0.6]”} |
| 2 | {“item”:”[2,3]”,”rating”:”[0.8,0.6]”} |
| user | item | rating | | —- | —- | —- |
| 4 | 7 | 0.4000 |
| 4 | 3 | 0.4000 |
| 4 | 6 | 0.3000 |
| 2 | 6 | 0.6000 |