Java 类名:com.alibaba.alink.pipeline.image.WriteTensorToImage
Python 类名:WriteTensorToImage
功能介绍
将张量列转换为图片,并写入根目录对应的相对路径列中,然后原样输出结果。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
relativeFilePathCol | 文件路径列 | 文件路径列 | String | ✓ | ||
rootFilePath | 文件路径 | 文件路径 | String | ✓ | ||
tensorCol | tensor列 | tensor列 | String | ✓ | ||
imageType | 图片类型 | 图片类型 | String | “PNG”, “JPEG” | “PNG” | |
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
代码示例
Python 代码
df_data = pd.DataFrame([
'sphx_glr_plot_scripted_tensor_transforms_001.png'
])
batch_data = BatchOperator.fromDataframe(df_data, schemaStr = 'path string')
readImageToTensorBatchOp = ReadImageToTensorBatchOp()\
.setRootFilePath("https://pytorch.org/vision/stable/_images/")\
.setRelativeFilePathCol("path")\
.setOutputCol("tensor")
writeTensorToImageBatchOp = WriteTensorToImageBatchOp()\
.setRootFilePath("/tmp/write_tensor_to_image")\
.setTensorCol("tensor")\
.setImageType("png")\
.setRelativeFilePathCol("path")
batch_data.link(readImageToTensorBatchOp).link(writeTensorToImageBatchOp).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.params.image.HasImageType.ImageType;
import com.alibaba.alink.pipeline.image.WriteTensorToImage;
import org.junit.Test;
import java.util.Collections;
import java.util.List;
public class WriteTensorToImageTest {
@Test
public void testWriteTensorToImage() throws Exception {
List <Row> data = Collections.singletonList(
Row.of("sphx_glr_plot_scripted_tensor_transforms_001.png")
);
MemSourceBatchOp memSourceBatchOp = new MemSourceBatchOp(data, "path string");
ReadImageToTensorBatchOp readImageToTensorBatchOp = new ReadImageToTensorBatchOp()
.setRootFilePath("https://pytorch.org/vision/stable/_images/")
.setRelativeFilePathCol("path")
.setOutputCol("tensor");
WriteTensorToImage writeTensorToImageBatchOp = new WriteTensorToImage()
.setRootFilePath("/tmp/write_tensor_to_image")
.setTensorCol("tensor")
.setImageType(ImageType.PNG)
.setRelativeFilePathCol("path");
writeTensorToImageBatchOp.transform(memSourceBatchOp.link(readImageToTensorBatchOp)).print();
}
}
运行结果
可以在 /tmp/write_tensor_to_image/sphx_glr_plot_scripted_tensor_transforms_001.png 中找到 https://pytorch.org/vision/stable/_images/sphx_glr_plot_scripted_tensor_transforms_001.png
同时组件的输出结果为:
| path | tensor |
|—————————————————————————+————————————————|
| sphx_glr_plot_scripted_tensor_transforms_001.png | FLOAT#250,520,4#255.0 255.0… |