Java 类名:com.alibaba.alink.pipeline.feature.Binarizer
Python 类名:Binarizer
功能介绍
给定一个阈值,将连续变量二值化(大于等于阈值转为1,小于阈值转为0)。
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
threshold | 二值化阈值 | 二值化阈值 | Double | 0.0 | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[1.1, True, "2", "A"],
[1.1, False, "2", "B"],
[1.1, True, "1", "B"],
[2.2, True, "1", "A"]
])
inOp = BatchOperator.fromDataframe(df, schemaStr='double double, bool boolean, number int, str string')
binarizer = Binarizer().setSelectedCol("double").setThreshold(2.0)
binarizer.transform(inOp).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.feature.Binarizer;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class BinarizerTest {
@Test
public void testBinarizer() throws Exception {
List <Row> df = Arrays.asList(
Row.of(1.1, true, 2, "A"),
Row.of(1.1, false, 2, "B"),
Row.of(1.1, true, 1, "B"),
Row.of(2.2, true, 1, "A")
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "double double, bool boolean, number int, str string");
Binarizer binarizer = new Binarizer().setSelectedCol("double").setThreshold(2.0);
binarizer.transform(inOp).print();
}
}
运行结果
| double | bool | number | str | | —- | —- | —- | —- |
| 0.0000 | true | 2 | A |
| 0.0000 | false | 2 | B |
| 0.0000 | true | 1 | B |
| 1.0000 | true | 1 | A |