Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScaler
Python 类名:VectorMaxAbsScaler
功能介绍
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", "10.0, 100"],
["b", "-2.5, 9"],
["c", "100.2, 1"],
["d", "-99.9, 100"],
["a", "1.4, 1"],
["b", "-2.2, 9"],
["c", "100.9, 1"]
])
data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string")
res = VectorMaxAbsScaler()\
.setSelectedCol("vec")
model = res.fit(data)
model.transform(data).collectToDataframe()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScaler;
import com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScalerModel;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class VectorMaxAbsScalerTest {
@Test
public void testVectorMaxAbsScaler() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", "10.0, 100"),
Row.of("b", "-2.5, 9"),
Row.of("c", "100.2, 1"),
Row.of("d", "-99.9, 100"),
Row.of("a", "1.4, 1"),
Row.of("b", "-2.2, 9"),
Row.of("c", "100.9, 1")
);
BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string");
VectorMaxAbsScaler res = new VectorMaxAbsScaler()
.setSelectedCol("vec");
VectorMaxAbsScalerModel model = res.fit(data);
model.transform(data).print();
}
}
运行结果
| col1 | vec | | —- | —- |
| c | 1.0,0.01 |
| b | -0.024777006937561942,0.09 |
| d | -0.9900891972249752,1.0 |
| a | 0.09910802775024777,1.0 |
| b | -0.02180376610505451,0.09 |
| c | 0.9930624380574826,0.01 |
| a | 0.013875123885034686,0.01 |