Java 类名:com.alibaba.alink.pipeline.regression.CartReg
Python 类名:CartReg
功能介绍
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | 
|---|---|---|---|---|---|---|
| featureCols | 特征列名 | 特征列名,必选 | String[] | ✓ | ||
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| categoricalCols | 离散特征列名 | 离散特征列名 | String[] | |||
| createTreeMode | 创建树的模式。 | series表示每个单机创建单颗树,parallel表示并行创建单颗树。 | String | “series” | ||
| maxBins | 连续特征进行分箱的最大个数 | 连续特征进行分箱的最大个数。 | Integer | 128 | ||
| maxDepth | 树的深度限制 | 树的深度限制 | Integer | 2147483647 | ||
| maxLeaves | 叶节点的最多个数 | 叶节点的最多个数 | Integer | 2147483647 | ||
| maxMemoryInMB | 树模型中用来加和统计量的最大内存使用数 | 树模型中用来加和统计量的最大内存使用数 | Integer | 64 | ||
| minInfoGain | 分裂的最小增益 | 分裂的最小增益 | Double | 0.0 | ||
| minSampleRatioPerChild | 子节点占父节点的最小样本比例 | 子节点占父节点的最小样本比例 | Double | 0.0 | ||
| minSamplesPerLeaf | 叶节点的最小样本个数 | 叶节点的最小样本个数 | Integer | 2 | ||
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| weightCol | 权重列名 | 权重列对应的列名 | String | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null | |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null | 
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[1.0, "A", 0, 0, 0],[2.0, "B", 1, 1, 0],[3.0, "C", 2, 2, 1],[4.0, "D", 3, 3, 1]])batchSource = BatchOperator.fromDataframe(df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int')streamSource = StreamOperator.fromDataframe(df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int')CartReg()\.setPredictionCol('pred')\.setLabelCol('label')\.setFeatureCols(['f0', 'f1', 'f2', 'f3'])\.fit(batchSource)\.transform(batchSource)\.print()CartReg()\.setPredictionCol('pred')\.setLabelCol('label')\.setFeatureCols(['f0', 'f1', 'f2', 'f3'])\.fit(batchSource)\.transform(streamSource)\.print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import com.alibaba.alink.pipeline.regression.CartReg;import org.junit.Test;import java.util.Arrays;import java.util.List;public class CartRegTest {@Testpublic void testCartReg() throws Exception {List <Row> df = Arrays.asList(Row.of(1.0, "A", 0, 0, 0),Row.of(2.0, "B", 1, 1, 0),Row.of(3.0, "C", 2, 2, 1),Row.of(4.0, "D", 3, 3, 1));BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f0 double, f1 string, f2 int, f3 int, label int");StreamOperator <?> streamSource = new MemSourceStreamOp(df, "f0 double, f1 string, f2 int, f3 int, label int");new CartReg().setPredictionCol("pred").setLabelCol("label").setFeatureCols("f0", "f1", "f2", "f3").fit(batchSource).transform(batchSource).print();new CartReg().setPredictionCol("pred").setLabelCol("label").setFeatureCols("f0", "f1", "f2", "f3").fit(batchSource).transform(streamSource).print();StreamOperator.execute();}}
运行结果
批预测结果
| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |
| 1.0000 | A | 0 | 0 | 0 | 0.0000 |
| 2.0000 | B | 1 | 1 | 0 | 0.0000 |
| 3.0000 | C | 2 | 2 | 1 | 1.0000 |
| 4.0000 | D | 3 | 3 | 1 | 1.0000 |
流预测结果
| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |
| 3.0000 | C | 2 | 2 | 1 | 1.0000 |
| 1.0000 | A | 0 | 0 | 0 | 0.0000 |
| 4.0000 | D | 3 | 3 | 1 | 1.0000 |
| 2.0000 | B | 1 | 1 | 0 | 0.0000 |
