Java 类名:com.alibaba.alink.operator.stream.regression.GbdtRegPredictStreamOp
Python 类名:GbdtRegPredictStreamOp
功能介绍
- gbdt(Gradient Boosting Decision Trees)回归,是经典的基于boosting的有监督学习模型,可以用来解决回归问题
- 支持连续特征和离散特征
- 支持数据采样和特征采样
参数说明
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | | —- | —- | —- | —- | —- | —- | —- |
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| reservedCols | 算法保留列名 | 算法保留列 | String[] | | | null |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | | | null |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | | | 1 |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | | | null |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | | | 10 |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | | | null |
代码示例
Python 代码
from pyalink.alink import *import pandas as pduseLocalEnv(1)df = pd.DataFrame([[1.0, "A", 0, 0, 0],[2.0, "B", 1, 1, 0],[3.0, "C", 2, 2, 1],[4.0, "D", 3, 3, 1]])batchSource = BatchOperator.fromDataframe(df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int')streamSource = StreamOperator.fromDataframe(df, schemaStr='f0 double, f1 string, f2 int, f3 int, label int')trainOp = GbdtRegTrainBatchOp()\.setLearningRate(1.0)\.setNumTrees(3)\.setMinSamplesPerLeaf(1)\.setLabelCol('label')\.setFeatureCols(['f0', 'f1', 'f2', 'f3'])\.linkFrom(batchSource)predictBatchOp = GbdtRegPredictBatchOp()\.setPredictionCol('pred')predictStreamOp = GbdtRegPredictStreamOp(trainOp)\.setPredictionCol('pred')predictBatchOp.linkFrom(trainOp, batchSource).print()predictStreamOp.linkFrom(streamSource).print()StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;import com.alibaba.alink.operator.batch.BatchOperator;import com.alibaba.alink.operator.batch.regression.GbdtRegPredictBatchOp;import com.alibaba.alink.operator.batch.regression.GbdtRegTrainBatchOp;import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;import com.alibaba.alink.operator.stream.StreamOperator;import com.alibaba.alink.operator.stream.regression.GbdtRegPredictStreamOp;import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;import org.junit.Test;import java.util.Arrays;import java.util.List;public class GbdtRegPredictStreamOpTest {@Testpublic void testGbdtRegPredictStreamOp() throws Exception {List <Row> df = Arrays.asList(Row.of(1.0, "A", 0, 0, 0),Row.of(2.0, "B", 1, 1, 0),Row.of(3.0, "C", 2, 2, 1),Row.of(4.0, "D", 3, 3, 1));BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f0 double, f1 string, f2 int, f3 int, label int");StreamOperator <?> streamSource = new MemSourceStreamOp(df, "f0 double, f1 string, f2 int, f3 int, label int");BatchOperator <?> trainOp = new GbdtRegTrainBatchOp().setLearningRate(1.0).setNumTrees(3).setMinSamplesPerLeaf(1).setLabelCol("label").setFeatureCols("f0", "f1", "f2", "f3").linkFrom(batchSource);BatchOperator <?> predictBatchOp = new GbdtRegPredictBatchOp().setPredictionCol("pred");StreamOperator <?> predictStreamOp = new GbdtRegPredictStreamOp(trainOp).setPredictionCol("pred");predictBatchOp.linkFrom(trainOp, batchSource).print();predictStreamOp.linkFrom(streamSource).print();StreamOperator.execute();}}
运行结果
批预测结果
| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |
| 1.0000 | A | 0 | 0 | 0 | 0.0000 |
| 2.0000 | B | 1 | 1 | 0 | 0.0000 |
| 3.0000 | C | 2 | 2 | 1 | 1.0000 |
| 4.0000 | D | 3 | 3 | 1 | 1.0000 |
流预测结果
| f0 | f1 | f2 | f3 | label | pred | | —- | —- | —- | —- | —- | —- |
| 2.0000 | B | 1 | 1 | 0 | 0.0000 |
| 4.0000 | D | 3 | 3 | 1 | 1.0000 |
| 1.0000 | A | 0 | 0 | 0 | 0.0000 |
| 3.0000 | C | 2 | 2 | 1 | 1.0000 |
